Investigation of dynamic fracture characteristics of frozen red sandstone using notched semi-circular bend method
-
摘要: 采用紅砂巖制作中心直裂紋半圓盤彎曲試樣(Notched semi-circular bend, NSCB),設置不同的負溫溫度對巖石試樣預處理,隨后利用改進后的分離式霍普金森桿(SHPB)實驗系統開展動態試驗。結果表明:巖石的斷裂韌度存在明顯的加載率效應,斷裂韌度試驗值隨加載率的增加近似呈指數型增大;當加載率一定時,巖石斷裂韌度由常溫進入負溫后先緩慢后快速增加,在–20 ℃時達到最大值,隨著溫度進一步降低,巖石斷裂韌度快速減小。進一步對巖石破裂過程分析發現,不同溫度下巖石的斷裂過程基本一致,且裂紋擴展速度受溫度影響較小。基于巖石斷面的掃描電子顯微鏡結果分析巖石斷裂模式為:負溫下紅砂巖的斷裂以沿晶破裂和膠結物的撕裂為主,伴有少量的穿晶破裂現象,同時當溫度降低至–25 ℃時,巖石內部微裂隙數量明顯增多,說明負溫對巖石具有劣化作用。最后探討了溫度對巖石內部結構的影響機制,對分析巖石斷裂特性的低溫效應具有一定參考意義。Abstract: Considering that fluctuations in temperature can cause variations in both the internal structure as well as the mineral composition of rocks, their fracture characteristics must be impacted accordingly. With the exponential development of geotechnical engineering in cold regions, it is urgent to study the influence of the sub-zero temperature environment on the mechanical properties and dynamic properties of rocks. In order to investigate the influence of sub-zero temperature gradient on the dynamic fracture characteristics of rocks, red sandstone was used for the preparation of notched semi-circular bend specimens. First, a water-saturated machine and a sub-zero temperature incubator were utilized to pretreat the rock for 48 h, conducive for both satiation and freezing processes. Subsequently, the dynamic tests were carried out utilizing an improved split Hopkinson bar experimental system with a cryogenic sub-system. Concurrently, the striker velocity was modulated by setting distinctive air pressures, following which the rock was loaded at various loading rates. The test results demonstrate that the fracture toughness of the rock has an evident loading rate effect, and the fracture toughness proliferates exponentially with the increase in the loading rate. In the event that the loading rate is certain, the fracture toughness of the rock primarily increases gradually and then expeditiously over the course of advancement from room temperature to ?20 ℃. Contradictorily, the rock fracture toughness diminishes abruptly with plummeting temperature. Analysis of the rock fracture process, accommodated by a high-speed camera, revealed that the fracture process of the rock at distinctive temperatures is fundamentally equivalent, and the crack propagation speed is negligibly influenced by the temperature. Furthermore, the rock fracture mode was analyzed by employing a scanning electron microscope (SEM) system. The SEM images of the rock depicted that the fracture of red sandstone at sub-zero temperature is predominantly intergranular fracture and cement tearing, accompanied by a trace of transgranular fracture. Meanwhile, the experimentation also revealed that the number of micro-cracks in the rock significantly multiplied when the temperature declined to ?25 ℃, illustrating that sub-zero temperature has a deteriorating effect on the rock. Conclusively, the influence mechanism of temperature on the internal structure of the rock is discussed, and it is assumed that the change in the internal structure of the rock is the collaborative effect of thermal expansion-cold contraction and ice-water phase transition. The interpretation of this study has substantial reference significance for the further consequential analysis of frigidity on the fracture properties of the rock.
-
Key words:
- NSCB /
- frozen /
- loading rate /
- fracture toughness /
- fracture mode
-
圖 17 基于孔隙連通性的孔隙分類[49]
Figure 17. Pore space classification in accordance with connectivity
表 1 加載率與動態斷裂韌度擬合曲線參數
Table 1. Loading rate and dynamic fracture toughness fitting curve parameters
Temperature /℃ a b c R2 25 13.54 –8.7 412.74 0.8891 –5 10.97 –7.58 178.82 0.9504 –10 11.83 –8.52 192.34 0.9905 –15 12.11 –10.39 135.68 0.9582 –20 16.98 –13.92 261.68 0.9533 –25 13.26 –10.01 192.09 0.9461 Notes: R2 represents correction of fitting. 259luxu-164 -
參考文獻
[1] Kawamura H, Hatano T, Kato N, et al. Statistical physics of fracture, friction, and earthquakes. Rev Mod Phys, 2012, 84(2): 839 doi: 10.1103/RevModPhys.84.839 [2] Zhang K, Cao P, Meng J J, et al. Modeling the progressive failure of jointed rock slope using fracture mechanics and the strength reduction method. Rock Mech Rock Eng, 2015, 48(2): 771 doi: 10.1007/s00603-014-0605-x [3] Brideau M A, Yan M, Stead D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, 2009, 103(1): 30 doi: 10.1016/j.geomorph.2008.04.010 [4] Ding C X, Yang R S, Chen C, et al. Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure. Int J Rock Mech Min Sci, 2022, 160: 105238 doi: 10.1016/j.ijrmms.2022.105238 [5] Yan Z L, Dai F, Zhu J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression. Rock Mech Rock Eng, 2021, 54(9): 5117 doi: 10.1007/s00603-021-02564-2 [6] Guan J F, Yuan P, Li L L, et al. Rock fracture with statistical determination of fictitious crack growth. Theor Appl Fract Mech, 2021, 112: 102895 doi: 10.1016/j.tafmec.2021.102895 [7] Saboori B, Ayatollahi M R. A novel test configuration designed for investigating mixed mode II/III fracture. Eng Fract Mech, 2018, 197: 248 doi: 10.1016/j.engfracmech.2018.04.048 [8] Asem P, Wang X R, Hu C, et al. On tensile fracture of a brittle rock. Int J Rock Mech Min Sci, 2021, 144: 104823 doi: 10.1016/j.ijrmms.2021.104823 [9] Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci, 2007, 44(5): 739 doi: 10.1016/j.ijrmms.2006.11.006 [10] Wang Q Z, Yang J R, Zhang C G, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental–numerical–analytical method. Eng Fract Mech, 2015, 141: 78 doi: 10.1016/j.engfracmech.2015.04.025 [11] Gao G, Yao W, Xia K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng Fract Mech, 2015, 138: 146 doi: 10.1016/j.engfracmech.2015.02.021 [12] Zuo J P, Wei X, Pei J L, et al. Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system. J Rock Mech Geotech Eng, 2015, 7(5): 593 doi: 10.1016/j.jrmge.2015.06.009 [13] Chen R, Li K, Xia K W, et al. Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method. Rock Mech Rock Eng, 2016, 49(10): 3865 doi: 10.1007/s00603-016-0958-4 [14] Zhou Z L, Cai X, Ma D, et al. Water saturation effects on dynamic fracture behavior of sandstone. Int J Rock Mech Min Sci, 2019, 114: 46 doi: 10.1016/j.ijrmms.2018.12.014 [15] Tian W L, Yang S Q, Xie L X, et al. Cracking behavior of three types granite with different grain size containing two non-coplanar fissures under uniaxial compression. Arch Civ Mech Eng, 2018, 18(4): 1580 doi: 10.1016/j.acme.2018.06.001 [16] Leite J P B, Slowik V, Apel J. Computational model of mesoscopic structure of concrete for simulation of fracture processes. Comput Struct, 2007, 85(17-18): 1293 doi: 10.1016/j.compstruc.2006.08.086 [17] Xu Y, Dai F, Xu N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng, 2016, 49(3): 731 doi: 10.1007/s00603-015-0787-x [18] Li X F, Zhang Q B, Li H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mech Rock Eng, 2018, 51(12): 3785 doi: 10.1007/s00603-018-1566-2 [19] Mahanta B, Singh T N, Ranjith P G. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol, 2016, 210: 103 doi: 10.1016/j.enggeo.2016.06.008 [20] Zhang Z X, Yu J, Kou S Q, et al. Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min Sci, 2001, 38(2): 211 doi: 10.1016/S1365-1609(00)00071-X [21] Talukdar M, Roy D G, Singh T. Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks. J Rock Mech Geotech Eng, 2018, 10(1): 91 doi: 10.1016/j.jrmge.2017.09.009 [22] Yin T B, Li X B, Xia K W, et al. Effect of thermal treatment on the dynamic fracture toughness of laurentian granite. Rock Mech Rock Eng, 2012, 45(6): 1087 doi: 10.1007/s00603-012-0240-3 [23] Feng G, Kang Y, Meng T, et al. The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone. Rock Mech Rock Eng, 2017, 50(8): 2007 doi: 10.1007/s00603-017-1226-y [24] Zuo J P, Wang J T, Sun Y J, et al. Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China. Eng Fract Mech, 2017, 182: 425 doi: 10.1016/j.engfracmech.2017.04.043 [25] Chen L, Mao X B, Yang S L, et al. Experimental investigation on dynamic fracture mechanism and energy evolution of saturated yellow sandstone under different freeze-thaw temperatures. Adv Civ Eng, 2019, 2019: 1 [26] Song Y J, Tan H, Yang H M, et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography. Eng Geol, 2021, 294: 106370 doi: 10.1016/j.enggeo.2021.106370 [27] Walder J, Hallet B. A theoretical model of the fracture of rock due to freezing. Geol Soc Am Bull, 1985, 96(3): 336 doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2 [28] Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions. Science, 2006, 314(5802): 1127 doi: 10.1126/science.1132127 [29] Jia H L, Xiang W, Tan L, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone. Chin J Rock Mech Eng, 2016, 35(5): 879賈海梁, 項偉, 譚龍, 等. 砂巖凍融損傷機制的理論分析和試驗驗證. 巖石力學與工程學報, 2016, 35(5):879 [30] Weng L, Wu Z J, Liu Q S. Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures. Rock Mech Rock Eng, 2020, 53(10): 4381 doi: 10.1007/s00603-019-02039-5 [31] Yang Y, Yang R S. “Frostbite effect” of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249楊陽, 楊仁樹. 高應變率下紅砂巖“凍傷效應”. 工程科學學報, 2019, 41(10):1249 [32] Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci, 2012, 49: 105 doi: 10.1016/j.ijrmms.2011.10.004 [33] Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech, 2002, 42: 93 doi: 10.1007/BF02411056 [34] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001 [35] Zhao Y X, Sun, Song H H, et al. Crack propagation law of mode Ⅰ dynamic fracture of coal: Experiment and numerical simulation. J China Coal Soc, 2020, 45(12): 3961 doi: 10.13225/j.cnki.jccs.2019.1347趙毅鑫, 孫荘, 宋紅華, 等. 煤Ⅰ型動態斷裂裂紋擴展規律試驗與數值模擬研究. 煤炭學報, 2020, 45(12):3961 doi: 10.13225/j.cnki.jccs.2019.1347 [36] Zhao Y X, Gong S, Hao X J, et al. Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments. Eng Fract Mech, 2017, 178: 375 doi: 10.1016/j.engfracmech.2017.03.011 [37] Liu R F, Zhu Z M, Li M, et al. Initiation and propagation of mode Ⅰ crack under blasting. Chin J Rock Mech Eng, 2018, 37(2): 392 doi: 10.13722/j.cnki.jrme.2017.1126劉瑞峰, 朱哲明, 李盟, 等. 爆炸載荷下Ⅰ型裂紋的起裂及擴展規律研究. 巖石力學與工程學報, 2018, 37(2):392 doi: 10.13722/j.cnki.jrme.2017.1126 [38] Dai F, Xia K, Zheng H, et al. Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech, 2011, 78(15): 2633 doi: 10.1016/j.engfracmech.2011.06.022 [39] Yin Z Q, Xie G X, Hu Z X, et al. Investigation on fracture mechanism of coal rock on three-point bending tests under different gas pressures. J China Coal Soc, 2016, 41(2): 424 doi: 10.13225/j.cnki.jccs.2015.0598殷志強, 謝廣祥, 胡祖祥, 等. 不同瓦斯壓力下煤巖三點彎曲斷裂特性研究. 煤炭學報, 2016, 41(2):424 doi: 10.13225/j.cnki.jccs.2015.0598 [40] Zuo J P, Wang X S, Mao D Q. SEM in situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load. Eng Fract Mech, 2014, 131: 504 doi: 10.1016/j.engfracmech.2014.09.006 [41] Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z [42] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: Fracture characteristics and energy partitioning. Int J Rock Mech Min Sci, 2000, 37(5): 745 doi: 10.1016/S1365-1609(00)00008-3 [43] Wang P, Xu J Y, Liu S H, et al. Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks. Eng Geol, 2016, 212: 44 doi: 10.1016/j.enggeo.2016.07.015 [44] Scherer G W. Crystallization in pores. Cement Concrete Res, 1999, 29(8): 1347 doi: 10.1016/S0008-8846(99)00002-2 [45] Wang P, Xu J Y, Fang X Y, et al. Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Reg Sci Technol, 2017, 143: 13 doi: 10.1016/j.coldregions.2017.07.002 [46] Weng L, Wu Z J, Liu Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures. Eng Fract Mech, 2019, 220: 106659 doi: 10.1016/j.engfracmech.2019.106659 [47] McGreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: A comparative discussion. Arct Alp Res, 1985, 17(3): 337 doi: 10.2307/1551022 [48] Ruedrich J, Siegesmund S. Fabric Dependence of Length Change Behaviour Induced by Ice Crystallisation in the Pore Space of Natural Building Stones. London: Taylor and Francis Group, 2006 [49] Ashworth E N, Abeles F B. Freezing behavior of water in small pores and the possible role in the freezing of plant tissues. Plant Physiol, 1984, 76(1): 201 doi: 10.1104/pp.76.1.201 [50] Zhang J K, Liu D, Ma Y J, et al. Water-rock mechanism of weakly consolidated sandstone: A case study of Qingyang north grottoes. J Northeast Univ, 2022, 43(7): 1019 doi: 10.12068/j.issn.1005-3026.2022.07.015張景科, 劉盾, 馬雨君, 等. 弱膠結砂巖水巖作用機制——以慶陽北石窟為例. 東北大學學報(自然科學版), 2022, 43(7):1019 doi: 10.12068/j.issn.1005-3026.2022.07.015 [51] Zhou Z L, Cai X, Zhao Y, et al. Strength characteristics of dry and saturated rock at different strain rates. Trans Nonferrous Met Soc China, 2016, 26(7): 1919 doi: 10.1016/S1003-6326(16)64314-5 -