<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于響應曲面法制備鋼渣–花生殼基生態活性炭及其吸附性能研究

Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance

  • 摘要: 以鋼渣超微粉和花生殼為原料制備鋼渣–花生殼基生態活性炭,基于響應曲面法研究微波功率、浸漬比、鋼渣摻量和鋼渣細度對鋼渣–花生殼基生態活性炭對甲醛氣體吸附率的影響,并對其進行優化處理。利用X-射線紅外光譜儀、場發射掃描電鏡、比表面積及孔徑測定儀等對鋼渣–花生殼基生態活性炭進行表征分析。結果表明:鋼渣–花生殼基生態活性炭最優制備參數為微波功率530 W,鋼渣細度1160目,鋼渣摻量(質量分數)10.8%,浸漬比1.25,其對甲醛氣體的吸附率為94.14%。影響鋼渣–花生殼基生態活性炭性能的因素次序依次為:微波功率、鋼渣摻量、浸漬比、鋼渣細度,其中微波功率與浸漬比、微波功率與鋼渣摻量、鋼渣摻量與鋼渣細度均存在顯著交互作用。適量鋼渣改性活性炭有利于形成規則的孔結構、提高表面酸性官能團含量以及增強表面極性。

     

    Abstract: Steel slag–peanut shell-based activated carbon was prepared using ultrafine steel slag powder and peanut shells through microwave processing. The response surface method was used to evaluate the effects of microwave power, impregnation ratio, steel slag content, and steel slag particle size on the rate of the adsorption of formaldehyde gas by the prepared activated carbon. Subsequently, optimum parameters were calculated for the preparation of activated carbon with the maximum rate of adsorption for formaldehyde gas adsorption. Finally, the activated carbon was characterized by an X-ray infrared spectrometer, field emission scanning electron microscope, and specific surface area and pore size analyzer. Results revealed that the activated carbon prepared using 530 W of microwave power, steel slag powder corresponding to a mesh size 1160, steel slag content equal to 10.8%, and impregnation ratio of 1.25 has the highest formaldehyde adsorption rate. According to the established regression model, the theoretical adsorption rate of formaldehyde gas will be 94.96% under the above optimal preparation conditions. Thus, the prepared activated carbon had a formaldehyde adsorption rate of 94.14%, which is within a 5% error range of the adsorption rate estimated by our regression model for the same conditions. We further demonstrated that our response curve model can predict the adsorption rate of the activated carbon prepared by this process efficiently and that it is feasible to optimize the preparation of activated carbon by the response surface method. Furthermore, the regression analysis further reveals that the degree of influence of the four factors related to this method of preparing activated carbon on the rate of formaldehyde gas adsorption is in the following order, from large to small: microwave power, steel slag content, impregnation ratio, and steel slag fineness. The mutual interaction of the four influencing factors on the formaldehyde gas adsorption rate can be intuitively observed through the three-dimensional response surface graph. Pore structure analysis of the activated carbon prepared using the optimal preparation conditions revealed that it has an H3-type hysteresis loop and a flat-panel slot-like structure. The pore size distribution is uneven, with predominant micropores and small-sized mesopores. Fourier-transform infrared spectroscopy analysis showed that after adding steel slag for modification, the activated carbon had more acidic functional groups, which is beneficial to the adsorption of formaldehyde. Morphological analysis reveals that the layered structure of the activated carbon is clear and that adding a small amount of steel slag is beneficial to improve the rate of pulverization.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164