<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋰/鈉離子電池納米紅磷負極結構調控與性能優化

周怡 苗文康 蔡岳玲 董余兵 歐斌 李倩倩

周怡, 苗文康, 蔡岳玲, 董余兵, 歐斌, 李倩倩. 鋰/鈉離子電池納米紅磷負極結構調控與性能優化[J]. 工程科學學報, 2023, 45(9): 1493-1508. doi: 10.13374/j.issn2095-9389.2022.07.18.002
引用本文: 周怡, 苗文康, 蔡岳玲, 董余兵, 歐斌, 李倩倩. 鋰/鈉離子電池納米紅磷負極結構調控與性能優化[J]. 工程科學學報, 2023, 45(9): 1493-1508. doi: 10.13374/j.issn2095-9389.2022.07.18.002
ZHOU Yi, MIAO Wenkang, CAI Yueling, DONG Yubing, OU Bin, LI Qianqian. Structural modification and performance optimization of red phosphorus nanomaterials as anodes for lithium/sodium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(9): 1493-1508. doi: 10.13374/j.issn2095-9389.2022.07.18.002
Citation: ZHOU Yi, MIAO Wenkang, CAI Yueling, DONG Yubing, OU Bin, LI Qianqian. Structural modification and performance optimization of red phosphorus nanomaterials as anodes for lithium/sodium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(9): 1493-1508. doi: 10.13374/j.issn2095-9389.2022.07.18.002

鋰/鈉離子電池納米紅磷負極結構調控與性能優化

doi: 10.13374/j.issn2095-9389.2022.07.18.002
基金項目: 國家自然科學基金NSAF培養項目(U2230102);國家自然科學基金面上項目(11972219)
詳細信息
    通訊作者:

    董余兵,E-mail: dyb19831120@zstu.edu.cn

    歐斌,E-mail: bin_ou@chalco.com.cn

  • 中圖分類號: TM912.9

Structural modification and performance optimization of red phosphorus nanomaterials as anodes for lithium/sodium-ion batteries

More Information
  • 摘要: 開發高性能二次電池材料是緩解能源與環境危機的有效途徑。商業鋰離子電池石墨負極由于理論容量較低且在鈉離子電池中幾乎不顯示容量,無法滿足人類日益增長的能量需求。紅磷由于理論容量高(2596 mA?h?g–1)、氧化/還原電位適宜、地球資源占比豐富以及價格低廉等優點成為堿金屬離子電池研究中的熱點,有望成為商業化大規模儲能系統中應用的負極材料。但是,紅磷在作為負極材料時具有導電性差、體積膨脹大等缺點,導致活性材料利用率低,電極粉化現象嚴重,電極循環穩定性差,嚴重限制了其在二次電池中的商業應用。最近研究表明,通過合理的結構設計可以有效地提高紅磷的電子導電率及結構穩定性,進而改善紅磷負極的循環穩定性和倍率性能,促進紅磷在商業鋰/鈉離子電池中的廣泛應用。本文綜述了近年來納米紅磷負極材料在可控合成方法、結構設計與改性以及性能優化機理上的研究進展。最后,總結了目前紅磷負極材料研究存在的問題,并提出可能的應對策略,對納米紅磷基負極材料未來在電池領域發展前景進行了展望,旨在促進其商業應用。

     

  • 圖  1  不同磷同素異形體的原子結構及相關合成條件[28]

    Figure  1.  Atomic structures and associated synthesis conditions of different P allotropes[28]

    圖  2  納米紅磷基負極的可控制備方法、多重納米結構和性能優化機理

    Figure  2.  Overview of the synthesis techniques, various structures, and performance optimization mechanisms of red phosphorus-based nanocomposites

    圖  3  (a) 商業紅磷水刻蝕原理圖[47];(b) 紅磷納米粒子合成設計示意圖[6];(c) RPNPs合成過程示意圖[53]

    Figure  3.  (a) Schematic of the water etching of commercial red phosphorus[47]; (b) schematic design of red phosphorus nanoparticles synthesis[6]; (c) schematic of the synthesis process of RPNPs[53]

    圖  4  (a)HRPN形成機制示意圖[57];(b)具有多孔殼的空心納米球在鋰化/鈉化和體積變化過程中的示意圖[58];(c)碘摻雜HNPRP合成示意圖[59];(d)多通道中空納米紅磷球[60]

    Figure  4.  (a) Schematic of the proposed formation mechanism of the HRPNs[57]; (b) schematic of hollow nanospheres with porous shells during lithiation/sodiation and volume variation[58]; (c) schematic of the iodine-doped HNPRP synthesis[59]; (d) multichannel hollow nano-red phosphorus ball[60]

    圖  5  (a) HHPCNSs/P復合材料合成過程的示意圖[67];(b) HPCNS/RP的V–C過程示意圖[68];(c) P@PMCNFs的制作工藝示意圖[73];(d) RPNP/MWNT復合材料合成的示意圖[75]

    Figure  5.  (a) Schematic of the synthesis process for the HHPCNSs/P composite[67]; (b) schematic of the V–C process[68]; (c) schematic of the fabrication process for P@PMCNFs[73]; (d) schematic of synthesis of RPNPs/MWNT composite[75]

    圖  6  (a) NPR@GRO合成過程示意圖[77];(b) P@GS復合材料制備示意圖[78];(c) P/TiN/Gnps合成示意圖[14];(d) P@RGO合成示意圖[79]

    Figure  6.  (a) Schematic of NPR@GRO synthesis process[77]; (b) schematic of preparation of P@GS composite[78]; (c) schematic of P/TiN/Gnps synthesis[14]; (d) synthesis diagram of P@RGO synthesis[79]

    圖  7  (a) P–SCNT復合材料的合成路線示意圖[85];(b) SIB系統中C@P/GA電極示意圖[86];(c)三維碳骨架(P/C復合材料)中超細紅磷顆粒合成過程的示意圖[87]

    Figure  7.  (a) Schematic and digital photographs of the synthetic route for P–SCNT composite[85]; (b) schematic of preparation of P@GS composite[86]; (c) schematic and digital photographs of the synthesis procedure for the ultrafine red phosphorus particles embedded in a 3D carbon framework (P/C composite)[87]

    圖  8  鋰插入過程中(a)和鋰提取期間(b)收縮的顆粒膨脹示意圖[89]

    Figure  8.  Schematic of particle expansion during lithium insertion (a) and contraction during lithium extraction (b)[89]

    表  1  紅磷納米材料的電化學性能對比

    Table  1.   Comparison of the electrochemical properties of red phosphorus nanomaterials

    SamplePreparation methodBattery typeCurrent densityCycle numberCapacity/(mA?h?g?1)
    Honeycomb-like red phosphorus[47]Template-less hydrothermalLi0.5 A?g?15001201
    Phosphorus composite nanosheets[52]Sublimation-inducedLi0.2 A?g?11001683
    Iodine-doped red phosphorus nanoparticles[6]Solution synthesisLi0.4 A?g?11501562
    0.2C1001700
    1C500900
    Red phosphorus nanoparticles[53]Solution synthesisLi0.1 A?g?11001380
    Hollow red phosphorus nanospheres[57]Molten-salt methodNa0.5C501500
    1C600737
    Hollow red-phosphorus nanospheres[58]Wet-chemical synthesisLi1C6001048
    Na1C600970
    Hollow nanoporous red phosphorus[59]Solution synthesisNa0.26 A?g?11001658
    2.6 A?g?11000857
    Multichannel nanoporous red phosphorus[60]Solvothermal synthesisNa200 mA?g?11001814
    3200 mA?g?1400735
    下載: 導出CSV

    表  2  紅磷/碳復合材料電化學性能對比

    Table  2.   Comparison of the electrochemical properties of red phosphorus/carbon composites

    SamplePreparation methodBattery typeCurrent densityCycle numberCapacity/(mA?h?g?1)
    Red phosphorus/carbon nanocages[83]Evacuation-fillingNa100 mA?g?11501363cp
    5000 mA?g?11300610cp
    Hollow porous carbon nanospheres/phosphorous[70]Vaporization/condensationNa1 A?g?11000548
    Hollow carbon nanospheres to host phosphorus[71]Vaporization/condensation (secondary annealing)Na4 A?g?120001027
    8 A?g?12000837
    Crystalline red phosphorus/porous carbon nanofibers[72]Vaporization/adsorptionLi0.1C1002030
    1C1001042
    Red phosphorus/porous multichannel carbon nanofibers[73]Vaporization/condensationNa500 mA?g?14001123cp
    1000 mA?g?1400918cp
    Phosphorus/N-doped carbon nanofiber composite[18]Vaporization/condensationNa100 mA?g?155731cp
    red Phosphorus/nanotube-backboned mesoporous carbon[74]Vaporization/condensationNa0.25 A?g?1150756.8cp
    Red phosphorus nanoparticles/multi-walled carbon nanotube[75]In-situ depositionLi200 mA?g?1100
    Red phosphorus/Ti3C2Tx[80]Ball-millingLi200 mA?g?1200818.2cp
    Ti3C2Tx MXene/carbon nanotubes@red phosphorus[81]Ball-millingLi0.05C5002078
    Red phosphorus/hierarchical micro–mesoporous carbon nanospheres[67]Vaporization/condensationLi2 A?g?110001201.6
    Red phosphorus/reduced graphene Oxide[77]Solution synthesisNa173.26 mA?g?11501249cp
    5.12 A?g?11500775
    Sandwich-like phosphorus/reduced graphene oxide composites[78]Spraying strategyLi100 mA?g?150990
    Red phosphorus/TiN/graphene[14]Ball-millingNa0.2C300
    Red phosphorus nanodots/reduced graphene oxide[79]physical vapor depositionNa1594 mA?g?1300914cp
    3D red phosphorus/sheared CNT sponge[85]Vaporization/condensationLi2 A?g?12000807cp
    3D hierarchical integrated carbon/red phosphorus/graphene aerogel composite[86]Vaporization/condensationNa1C2001095
    0.1C1001867
    Red phosphorus-filled 3D carbon material[87]Carbothermic reduction synthesisNa0.2C160920cp
    Note: cp denotes specific capacity calculated as the mass of the composite.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438
    [2] Wang X, Kim H M, Xiao Y, et al. Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A, 2016, 4(39): 14915 doi: 10.1039/C6TA06705K
    [3] Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci, 2012, 5(5): 6652 doi: 10.1039/c2ee03410g
    [4] Xu R H, Yao Y C, Liang F. Status and development trend of phosphorus-based materials applied in metal ion battery anode. Chem Ind Eng Prog, 2019, 38(9): 4142 doi: 10.16085/j.issn.1000-6613.2018-2253

    徐汝輝, 姚耀春, 梁風. 磷基負極材料在金屬離子電池中的現狀與趨勢. 化工進展, 2019, 38(9):4142 doi: 10.16085/j.issn.1000-6613.2018-2253
    [5] Noorden R V. The rechargeable revolution: A better battery. Nature, 2014, 507(7490): 26 doi: 10.1038/507026a
    [6] Chang W C, Tseng K W, Tuan H Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett, 2017, 17(2): 1240 doi: 10.1021/acs.nanolett.6b05081
    [7] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future. Energy Environ Sci, 2011, 4(9): 3287
    [8] Zhao Y, Li X F, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater, 2016, 6(8): 1502175 doi: 10.1002/aenm.201502175
    [9] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359 doi: 10.1038/35104644
    [10] Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries. Adv Mater, 2018, 30(33): 1800561 doi: 10.1002/adma.201800561
    [11] Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol, 2015, 10(11): 980 doi: 10.1038/nnano.2015.194
    [12] Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2012, 2(7): 710 doi: 10.1002/aenm.201200026
    [13] Wang L, He X M, Li J J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed Engl, 2012, 51(36): 9034 doi: 10.1002/anie.201204591
    [14] Li W J, Han C, Gu Q F, et al. Three-dimensional electronic network assisted by TiN conductive Pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano, 2020, 14(4): 4609 doi: 10.1021/acsnano.0c00216
    [15] Li W H, Yang Z Z, Li M S, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett, 2016, 16(3): 1546 doi: 10.1021/acs.nanolett.5b03903
    [16] Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett, 2013, 13(11): 5480 doi: 10.1021/nl403053v
    [17] Zhang C, Wang X, Liang Q F, et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett, 2016, 16(3): 2054 doi: 10.1021/acs.nanolett.6b00057
    [18] Ruan B Y, Wang J, Shi D Q, et al. A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A, 2015, 3(37): 19011 doi: 10.1039/C5TA04366B
    [19] Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25(22): 3045 doi: 10.1002/adma.201204877
    [20] Wu N, Yao H R, Yin Y X, et al. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. J Mater Chem A, 2015, 3(48): 24221 doi: 10.1039/C5TA08367B
    [21] Lu J H, Xue S S, Lian F. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries—A short review. Chin J Eng, 2020, 42(5): 527

    魯建豪, 薛杉杉, 連芳. 基于金屬有機框架材料設計合成鋰離子電池電極材料的研究進展. 工程科學學報, 2020, 42(5):527
    [22] Ni J F, Li L, Lu J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett, 2018, 3(5): 1137 doi: 10.1021/acsenergylett.8b00312
    [23] Xia Q B, Li W J, Miao Z C, et al. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res, 2017, 10(12): 4055 doi: 10.1007/s12274-017-1671-7
    [24] Yang F H, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods, 2017, 1(11): 1700216 doi: 10.1002/smtd.201700216
    [25] Zhang Y, Bai J, Zhao H L. Preparation of nanosized red phosphorus and its application in sodium-ion batteries. Chin J Eng, 2022, 44(4): 590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012

    張宇, 白金, 趙海雷. 紅磷的納米化及其在鈉離子電池中的應用. 工程科學學報, 2022, 44(4):590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012
    [26] Pang J B, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv Energy Mater, 2018, 8(8): 1702093 doi: 10.1002/aenm.201702093
    [27] Bachhuber F, von Appen J, Dronskowski R, et al. Van der Waals interactions in selected allotropes of phosphorus. Zeitschrift Für Kristallographie Cryst Mater, 2015, 230(2): 107
    [28] Fung C M, Er C C, Tan L L, et al. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem Rev, 2022, 122(3): 3879 doi: 10.1021/acs.chemrev.1c00068
    [29] Hart R R, Robin M B, Kuebler N A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J Chem Phys, 1965, 42(10): 3631 doi: 10.1063/1.1695771
    [30] Sun L Q, Li M J, Sun K, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C, 2012, 116(28): 14772 doi: 10.1021/jp302265n
    [31] Carvalho A, Wang M, Zhu X, et al. Phosphorene: From theory to applications. Nat Rev Mater, 2016, 1(11): 1
    [32] Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus. Proc Natl Acad Sci, 2015, 112(15): 4523 doi: 10.1073/pnas.1416581112
    [33] Ruck M, Hoppe D, Wahl B, et al. Fibrous red phosphorus. Angew Chem Int Ed Engl, 2005, 44(46): 7616 doi: 10.1002/anie.200503017
    [34] Roth W L, DeWitt T W, Smith A J. Polymorphism of red phosphorus. J Am Chem Soc, 1947, 69(11): 2881 doi: 10.1021/ja01203a072
    [35] Winchester R A L, Whitby M, Shaffer M S P. Synthesis of pure phosphorus nanostructures. Angew Chem Int Ed Engl, 2009, 48(20): 3616 doi: 10.1002/anie.200805222
    [36] Zhang S, Qian H J, Liu Z H, et al. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew Chem Int Ed Engl, 2019, 58(6): 1659 doi: 10.1002/anie.201811152
    [37] Bachhuber F, von Appen J, Dronskowski R, et al. The extended stability range of phosphorus allotropes. Angew Chem Int Ed Engl, 2014, 53(43): 11629 doi: 10.1002/anie.201404147
    [38] Ding K N, Wen L L, Huang S P, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Adv, 2016, 6(84): 80872 doi: 10.1039/C6RA10907A
    [39] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496 doi: 10.1038/35035045
    [40] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4(5): 366 doi: 10.1038/nmat1368
    [41] Wang N, Gao Y, Wang Y X, et al. Nanoengineering to achieve high sodium storage: A case study of carbon coated hierarchical nanoporous TiO2 microfibers. Adv Sci (Weinh), 2016, 3(8): 1600013 doi: 10.1002/advs.201600013
    [42] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol, 2012, 7(5): 310 doi: 10.1038/nnano.2012.35
    [43] Deshpande R, Cheng Y T, Verbrugge M W. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources, 2010, 195(15): 5081 doi: 10.1016/j.jpowsour.2010.02.021
    [44] Zhao Y, Stein P, Bai Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources, 2019, 413: 259 doi: 10.1016/j.jpowsour.2018.12.011
    [45] Oro S, Urita K, Moriguchi I. Nanospace-controlled SnO2/nanoporous carbon composite as a high-performance anode for sodium ion batteries. Chem Lett, 2017, 46(4): 502 doi: 10.1246/cl.161185
    [46] Li W H, Hu S H, Luo X Y, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29(16): 1605820 doi: 10.1002/adma.201605820
    [47] Zhu J L, Liu Z G, Wang W, et al. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano, 2021, 15(1): 1880 doi: 10.1021/acsnano.1c00048
    [48] Liu S, Feng J K, Bian X F, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ Sci, 2016, 9(4): 1229 doi: 10.1039/C5EE03699B
    [49] Yao Y, Mcdowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett, 2011, 11(7): 2949 doi: 10.1021/nl201470j
    [50] Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett, 2014, 14(7): 4119 doi: 10.1021/nl501692p
    [51] Guo Y P, Wei Y Q, Li H Q, et al. Layer structured materials for advanced energy storage and conversion. Small, 2017, 13(45): 1701649 doi: 10.1002/smll.201701649
    [52] Zhang Y Y, Rui X H, Tang Y X, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater, 2016, 6(10): 1502409 doi: 10.1002/aenm.201502409
    [53] Wang F, Zi W W, Zhao B X, et al. Facile solution synthesis of red phosphorus nanoparticles for lithium ion battery anodes. Nanoscale Res Lett, 2018, 13(1): 356 doi: 10.1186/s11671-018-2770-4
    [54] Jiang Z Z, Sen A. Iodine-doped poly(ethylenepyrrolediyl) derivatives: A new class of nonconjugated conducting polymers. Macromolecules, 1992, 25(2): 880 doi: 10.1021/ma00028a057
    [55] Lai X Y, Halpert J E, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ Sci, 2012, 5(2): 5604 doi: 10.1039/C1EE02426D
    [56] Lou X ?, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater, 2006, 18(17): 2325 doi: 10.1002/adma.200600733
    [57] Zhu L Q, Zhu Z X, Zhou J B, et al. Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chem Commun (Camb), 2020, 56(79): 11795 doi: 10.1039/D0CC05087C
    [58] Zhou J B, Liu X Y, Cai W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater, 2017, 29(29): 1700214 doi: 10.1002/adma.201700214
    [59] Liu S, Xu H, Bian X F, et al. Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. J Mater Chem A, 2018, 6(27): 12992 doi: 10.1039/C8TA03301C
    [60] Santhoshkumar P, Shaji N, Nanthagopal M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. J Power Sources, 2020, 470: 228459 doi: 10.1016/j.jpowsour.2020.228459
    [61] Wang C H, Kaneti Y V, Bando Y, et al. Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz, 2018, 5(3): 394 doi: 10.1039/C8MH00133B
    [62] Li S J, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications—A review. J Mater Chem A, 2016, 4(33): 12686 doi: 10.1039/C6TA03802F
    [63] Luo J M, Sun Y G, Guo S J, et al. Hollow carbon nanospheres: Syntheses and applications for post lithium-ion batteries. Mater Chem Front, 2020, 4(8): 2283 doi: 10.1039/D0QM00313A
    [64] Li Z, Wu H B, Lou X W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci, 2016, 9(10): 3061 doi: 10.1039/C6EE02364A
    [65] Liu T, Zhang L Y, Cheng B, et al. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater, 2019, 9(17): 1803900 doi: 10.1002/aenm.201803900
    [66] Jiang J M, Nie G D, Nie P, et al. Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges. Nanomicro Lett, 2020, 12(1): 183
    [67] Liu B Q, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano, 2019, 13(11): 13513 doi: 10.1021/acsnano.9b07428
    [68] Yao S S, Cui J, Huang J Q, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater, 2018, 8(7): 1702267 doi: 10.1002/aenm.201702267
    [69] Jin H L, Lu H, Wu W Y, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70: 104569 doi: 10.1016/j.nanoen.2020.104569
    [70] Yu L, Hu H, Wu H B, et al. Complex hollow nanostructures: Synthesis and energy-related applications. Adv Mater, 2017, 29(15): 1604563 doi: 10.1002/adma.201604563
    [71] Jin T, Han Q Q, Wang Y J, et al. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries. Small, 2018, 14(2): 1703086 doi: 10.1002/smll.201703086
    [72] Li W H, Yang Z Z, Jiang Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78: 455 doi: 10.1016/j.carbon.2014.07.026
    [73] Sun X Z, Li W H, Zhong X W, et al. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Mater, 2017, 9: 112 doi: 10.1016/j.ensm.2017.07.003
    [74] Liu D, Huang X K, Qu D Y, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52: 1 doi: 10.1016/j.nanoen.2018.07.023
    [75] Zhang L, Yu H Y, Wang Y L. Scalable method for preparing multi-walled carbon nanotube supported red phosphorus nanoparticles as anode material in lithium-ion batteries. Mater Lett, 2022, 312: 131638 doi: 10.1016/j.matlet.2021.131638
    [76] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
    [77] Liu S, Xu H, Bian X F, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano, 2018, 12(7): 7380 doi: 10.1021/acsnano.8b04075
    [78] Wang L Y, Guo H L, Wang W, et al. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 211: 499 doi: 10.1016/j.electacta.2016.06.052
    [79] Liu Y H, Zhang A Y, Shen C F, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530 doi: 10.1021/acsnano.7b00557
    [80] Zhang S L, Li X Y, Yang W T, et al. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces, 2019, 11(45): 42086 doi: 10.1021/acsami.9b13308
    [81] Zhang S X, Liu H, Cao B, et al. An MXene/CNTs@P nanohybrid with stable Ti-O-P bonds for enhanced lithium ion storage. J Mater Chem A, 2019, 7(38): 21766 doi: 10.1039/C9TA07357D
    [82] Liu W L, Ju S L, Yu X B. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano, 2020, 14(1): 974 doi: 10.1021/acsnano.9b08282
    [83] Liu W L, Du L Y, Ju S L, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano, 2021, 15(3): 5679 doi: 10.1021/acsnano.1c00924
    [84] Li Y, Jiang S, Qian Y, et al. Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chem Commun (Camb), 2019, 55(47): 6751 doi: 10.1039/C9CC02971K
    [85] Yuan T, Ruan J F, Peng C X, et al. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Storage Mater, 2018, 13: 267 doi: 10.1016/j.ensm.2018.01.014
    [86] Gao H, Zhou T F, Zheng Y, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv Energy Mater, 2016, 6(21): 1601037 doi: 10.1002/aenm.201601037
    [87] Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater, 2016, 4: 130 doi: 10.1016/j.ensm.2016.04.003
    [88] Wang J X, Huang Z P, Duan H L, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin, 2011, 24(1): 52 doi: 10.1016/S0894-9166(11)60009-8
    [89] Christensen J, Newman J. Stress generation and fracture in lithium insertion materials. J Solid State Electrochem, 2006, 10(5): 293 doi: 10.1007/s10008-006-0095-1
    [90] Lu Y Y, Ni Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater, 2015, 91: 372 doi: 10.1016/j.mechmat.2015.03.010
    [91] Liu Y H, Liu Q Z, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun, 2020, 11(1): 2520 doi: 10.1038/s41467-020-16077-z
    [92] Bhandakkar T K, Johnson H T. Diffusion induced stresses in buckling battery electrodes. J Mech Phys Solids, 2012, 60(6): 1103 doi: 10.1016/j.jmps.2012.02.012
    [93] Baggetto L, Danilov D, Notten P H L. Honeycomb-structured silicon: Remarkable morphological changes induced by electrochemical (de)lithiation. Adv Mater, 2011, 23(13): 1563 doi: 10.1002/adma.201003665
    [94] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed Engl, 2013, 52(17): 4633 doi: 10.1002/anie.201209689
    [95] Feng W C, Wang H, Jiang Y L, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater, 2022, 12(7): 2103343 doi: 10.1002/aenm.202103343
    [96] Capone I, Aspinall J, Darnbrough E, et al. Electrochemo-mechanical properties of red phosphorus anodes in lithium, sodium, and potassium ion batteries. Matter, 2020, 3(6): 2012 doi: 10.1016/j.matt.2020.09.017
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  391
  • HTML全文瀏覽量:  167
  • PDF下載量:  94
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-07-18
  • 網絡出版日期:  2022-08-18
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回