Structural modification and performance optimization of red phosphorus nanomaterials as anodes for lithium/sodium-ion batteries
-
摘要: 開發高性能二次電池材料是緩解能源與環境危機的有效途徑。商業鋰離子電池石墨負極由于理論容量較低且在鈉離子電池中幾乎不顯示容量,無法滿足人類日益增長的能量需求。紅磷由于理論容量高(2596 mA?h?g–1)、氧化/還原電位適宜、地球資源占比豐富以及價格低廉等優點成為堿金屬離子電池研究中的熱點,有望成為商業化大規模儲能系統中應用的負極材料。但是,紅磷在作為負極材料時具有導電性差、體積膨脹大等缺點,導致活性材料利用率低,電極粉化現象嚴重,電極循環穩定性差,嚴重限制了其在二次電池中的商業應用。最近研究表明,通過合理的結構設計可以有效地提高紅磷的電子導電率及結構穩定性,進而改善紅磷負極的循環穩定性和倍率性能,促進紅磷在商業鋰/鈉離子電池中的廣泛應用。本文綜述了近年來納米紅磷負極材料在可控合成方法、結構設計與改性以及性能優化機理上的研究進展。最后,總結了目前紅磷負極材料研究存在的問題,并提出可能的應對策略,對納米紅磷基負極材料未來在電池領域發展前景進行了展望,旨在促進其商業應用。Abstract: Developing electrode materials for high-performance secondary batteries is one of the most effective approaches to alleviate energy and environmental crises. Nowadays, graphite anodes, which are widely used in commercial lithium-ion batteries, cannot satisfy the ever-growing energy needs of humans owing to their relatively low theoretical capacities and nearly no capacity in sodium-ion batteries. Therefore, developing new anodes with high capacity and energy density is necessary for next-generation large-scale energy systems. Red phosphorus has become an interesting topic in alkali-ion battery research and is expected to be commercially used as anode material in the next generation of secondary batteries owing to their intrinsic properties, such as their high activity, high theoretical specific capacity (2596 mA?h?g?1), suitable oxidation–reduction potential, highly abundant earth resources, and low cost of lithium/sodium-ion batteries. However, red phosphorus exhibits poor electrical conductivity and large volume expansion when used as electrode material, resulting in low utilization of active material, serious electrode pulverization, and poor electrode cycling stability, which seriously hindered their commercial application in next-generation rechargeable batteries. Recent studies have shown that the cycle stability and electronic conductivity of red phosphorus can be improved by rational structural design, which promotes the electrochemical performance of red phosphorus anodes. For example, reducing the material size to the nanoscale can effectively shorten the diffusion path, enhancing the ion diffusion rate while alleviating the volume expansion and pulverization of the active substance. Additionally, the size reduction changes the band energy of the red phosphorus, which can transform indirect into direct bandgap semiconductors. Besides, the external characteristics of the active materials affect the performance by reducing the internal stress generated by the phase transformation in charging and discharging cycles. By modifying the morphology and structure of red phosphorus to form porous, layer, hollow, or composite structures, the cyclability and chargeability of batteries could be optimized because the internal stress generated by the volume change of the active material can be effectively released, and the generation probability of cracks or fractures in the electrode is drastically reduced. Therefore, these strategies help alleviate electrode pulverization and promote the commercial application of red phosphorus in lithium/sodium-ion batteries. Herein, we review the recent research progress in controllable synthesis, structural design, and performance optimization mechanisms of red phosphorus-based nanocomposites. Finally, we summarize the challenges in current research on red phosphorus anode materials, propose potential solutions, and provide an outlook on the future development of red phosphorus-based anode materials in the energy storage system.
-
Key words:
- red phosphorus /
- rechargeable battery /
- structure design /
- performance optimization /
- preparation
-
圖 4 (a)HRPN形成機制示意圖[57];(b)具有多孔殼的空心納米球在鋰化/鈉化和體積變化過程中的示意圖[58];(c)碘摻雜HNPRP合成示意圖[59];(d)多通道中空納米紅磷球[60]
Figure 4. (a) Schematic of the proposed formation mechanism of the HRPNs[57]; (b) schematic of hollow nanospheres with porous shells during lithiation/sodiation and volume variation[58]; (c) schematic of the iodine-doped HNPRP synthesis[59]; (d) multichannel hollow nano-red phosphorus ball[60]
圖 5 (a) HHPCNSs/P復合材料合成過程的示意圖[67];(b) HPCNS/RP的V–C過程示意圖[68];(c) P@PMCNFs的制作工藝示意圖[73];(d) RPNP/MWNT復合材料合成的示意圖[75]
Figure 5. (a) Schematic of the synthesis process for the HHPCNSs/P composite[67]; (b) schematic of the V–C process[68]; (c) schematic of the fabrication process for P@PMCNFs[73]; (d) schematic of synthesis of RPNPs/MWNT composite[75]
圖 7 (a) P–SCNT復合材料的合成路線示意圖[85];(b) SIB系統中C@P/GA電極示意圖[86];(c)三維碳骨架(P/C復合材料)中超細紅磷顆粒合成過程的示意圖[87]
Figure 7. (a) Schematic and digital photographs of the synthetic route for P–SCNT composite[85]; (b) schematic of preparation of P@GS composite[86]; (c) schematic and digital photographs of the synthesis procedure for the ultrafine red phosphorus particles embedded in a 3D carbon framework (P/C composite)[87]
表 1 紅磷納米材料的電化學性能對比
Table 1. Comparison of the electrochemical properties of red phosphorus nanomaterials
Sample Preparation method Battery type Current density Cycle number Capacity/(mA?h?g?1) Honeycomb-like red phosphorus[47] Template-less hydrothermal Li 0.5 A?g?1 500 1201 Phosphorus composite nanosheets[52] Sublimation-induced Li 0.2 A?g?1 100 1683 Iodine-doped red phosphorus nanoparticles[6] Solution synthesis Li 0.4 A?g?1 150 1562 0.2C 100 1700 1C 500 900 Red phosphorus nanoparticles[53] Solution synthesis Li 0.1 A?g?1 100 1380 Hollow red phosphorus nanospheres[57] Molten-salt method Na 0.5C 50 1500 1C 600 737 Hollow red-phosphorus nanospheres[58] Wet-chemical synthesis Li 1C 600 1048 Na 1C 600 970 Hollow nanoporous red phosphorus[59] Solution synthesis Na 0.26 A?g?1 100 1658 2.6 A?g?1 1000 857 Multichannel nanoporous red phosphorus[60] Solvothermal synthesis Na 200 mA?g?1 100 1814 3200 mA?g?1 400 735 表 2 紅磷/碳復合材料電化學性能對比
Table 2. Comparison of the electrochemical properties of red phosphorus/carbon composites
Sample Preparation method Battery type Current density Cycle number Capacity/(mA?h?g?1) Red phosphorus/carbon nanocages[83] Evacuation-filling Na 100 mA?g?1 150 1363cp 5000 mA?g?1 1300 610cp Hollow porous carbon nanospheres/phosphorous[70] Vaporization/condensation Na 1 A?g?1 1000 548 Hollow carbon nanospheres to host phosphorus[71] Vaporization/condensation (secondary annealing) Na 4 A?g?1 2000 1027 8 A?g?1 2000 837 Crystalline red phosphorus/porous carbon nanofibers[72] Vaporization/adsorption Li 0.1C 100 2030 1C 100 1042 Red phosphorus/porous multichannel carbon nanofibers[73] Vaporization/condensation Na 500 mA?g?1 400 1123cp 1000 mA?g?1 400 918cp Phosphorus/N-doped carbon nanofiber composite[18] Vaporization/condensation Na 100 mA?g?1 55 731cp red Phosphorus/nanotube-backboned mesoporous carbon[74] Vaporization/condensation Na 0.25 A?g?1 150 756.8cp Red phosphorus nanoparticles/multi-walled carbon nanotube[75] In-situ deposition Li 200 mA?g?1 100 — Red phosphorus/Ti3C2Tx[80] Ball-milling Li 200 mA?g?1 200 818.2cp Ti3C2Tx MXene/carbon nanotubes@red phosphorus[81] Ball-milling Li 0.05C 500 2078 Red phosphorus/hierarchical micro–mesoporous carbon nanospheres[67] Vaporization/condensation Li 2 A?g?1 1000 1201.6 Red phosphorus/reduced graphene Oxide[77] Solution synthesis Na 173.26 mA?g?1 150 1249cp 5.12 A?g?1 1500 775 Sandwich-like phosphorus/reduced graphene oxide composites[78] Spraying strategy Li 100 mA?g?1 50 990 Red phosphorus/TiN/graphene[14] Ball-milling Na 0.2C 300 — Red phosphorus nanodots/reduced graphene oxide[79] physical vapor deposition Na 1594 mA?g?1 300 914cp 3D red phosphorus/sheared CNT sponge[85] Vaporization/condensation Li 2 A?g?1 2000 807cp 3D hierarchical integrated carbon/red phosphorus/graphene aerogel composite[86] Vaporization/condensation Na 1C 200 1095 0.1C 100 1867 Red phosphorus-filled 3D carbon material[87] Carbothermic reduction synthesis Na 0.2C 160 920cp Note: cp denotes specific capacity calculated as the mass of the composite. 259luxu-164 -
參考文獻
[1] Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438 [2] Wang X, Kim H M, Xiao Y, et al. Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A, 2016, 4(39): 14915 doi: 10.1039/C6TA06705K [3] Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci, 2012, 5(5): 6652 doi: 10.1039/c2ee03410g [4] Xu R H, Yao Y C, Liang F. Status and development trend of phosphorus-based materials applied in metal ion battery anode. Chem Ind Eng Prog, 2019, 38(9): 4142 doi: 10.16085/j.issn.1000-6613.2018-2253徐汝輝, 姚耀春, 梁風. 磷基負極材料在金屬離子電池中的現狀與趨勢. 化工進展, 2019, 38(9):4142 doi: 10.16085/j.issn.1000-6613.2018-2253 [5] Noorden R V. The rechargeable revolution: A better battery. Nature, 2014, 507(7490): 26 doi: 10.1038/507026a [6] Chang W C, Tseng K W, Tuan H Y. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. Nano Lett, 2017, 17(2): 1240 doi: 10.1021/acs.nanolett.6b05081 [7] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future. Energy Environ Sci, 2011, 4(9): 3287 [8] Zhao Y, Li X F, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater, 2016, 6(8): 1502175 doi: 10.1002/aenm.201502175 [9] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359 doi: 10.1038/35104644 [10] Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries. Adv Mater, 2018, 30(33): 1800561 doi: 10.1002/adma.201800561 [11] Sun J, Lee H W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol, 2015, 10(11): 980 doi: 10.1038/nnano.2015.194 [12] Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv Energy Mater, 2012, 2(7): 710 doi: 10.1002/aenm.201200026 [13] Wang L, He X M, Li J J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem Int Ed Engl, 2012, 51(36): 9034 doi: 10.1002/anie.201204591 [14] Li W J, Han C, Gu Q F, et al. Three-dimensional electronic network assisted by TiN conductive Pillars and chemical adsorption to boost the electrochemical performance of red phosphorus. ACS Nano, 2020, 14(4): 4609 doi: 10.1021/acsnano.0c00216 [15] Li W H, Yang Z Z, Li M S, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett, 2016, 16(3): 1546 doi: 10.1021/acs.nanolett.5b03903 [16] Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett, 2013, 13(11): 5480 doi: 10.1021/nl403053v [17] Zhang C, Wang X, Liang Q F, et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett, 2016, 16(3): 2054 doi: 10.1021/acs.nanolett.6b00057 [18] Ruan B Y, Wang J, Shi D Q, et al. A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A, 2015, 3(37): 19011 doi: 10.1039/C5TA04366B [19] Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater, 2013, 25(22): 3045 doi: 10.1002/adma.201204877 [20] Wu N, Yao H R, Yin Y X, et al. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. J Mater Chem A, 2015, 3(48): 24221 doi: 10.1039/C5TA08367B [21] Lu J H, Xue S S, Lian F. Research progress of MOFs-derived materials as the electrode for lithium–ion batteries—A short review. Chin J Eng, 2020, 42(5): 527魯建豪, 薛杉杉, 連芳. 基于金屬有機框架材料設計合成鋰離子電池電極材料的研究進展. 工程科學學報, 2020, 42(5):527 [22] Ni J F, Li L, Lu J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett, 2018, 3(5): 1137 doi: 10.1021/acsenergylett.8b00312 [23] Xia Q B, Li W J, Miao Z C, et al. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res, 2017, 10(12): 4055 doi: 10.1007/s12274-017-1671-7 [24] Yang F H, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods, 2017, 1(11): 1700216 doi: 10.1002/smtd.201700216 [25] Zhang Y, Bai J, Zhao H L. Preparation of nanosized red phosphorus and its application in sodium-ion batteries. Chin J Eng, 2022, 44(4): 590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012張宇, 白金, 趙海雷. 紅磷的納米化及其在鈉離子電池中的應用. 工程科學學報, 2022, 44(4):590 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204012 [26] Pang J B, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv Energy Mater, 2018, 8(8): 1702093 doi: 10.1002/aenm.201702093 [27] Bachhuber F, von Appen J, Dronskowski R, et al. Van der Waals interactions in selected allotropes of phosphorus. Zeitschrift Für Kristallographie Cryst Mater, 2015, 230(2): 107 [28] Fung C M, Er C C, Tan L L, et al. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem Rev, 2022, 122(3): 3879 doi: 10.1021/acs.chemrev.1c00068 [29] Hart R R, Robin M B, Kuebler N A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J Chem Phys, 1965, 42(10): 3631 doi: 10.1063/1.1695771 [30] Sun L Q, Li M J, Sun K, et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C, 2012, 116(28): 14772 doi: 10.1021/jp302265n [31] Carvalho A, Wang M, Zhu X, et al. Phosphorene: From theory to applications. Nat Rev Mater, 2016, 1(11): 1 [32] Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus. Proc Natl Acad Sci, 2015, 112(15): 4523 doi: 10.1073/pnas.1416581112 [33] Ruck M, Hoppe D, Wahl B, et al. Fibrous red phosphorus. Angew Chem Int Ed Engl, 2005, 44(46): 7616 doi: 10.1002/anie.200503017 [34] Roth W L, DeWitt T W, Smith A J. Polymorphism of red phosphorus. J Am Chem Soc, 1947, 69(11): 2881 doi: 10.1021/ja01203a072 [35] Winchester R A L, Whitby M, Shaffer M S P. Synthesis of pure phosphorus nanostructures. Angew Chem Int Ed Engl, 2009, 48(20): 3616 doi: 10.1002/anie.200805222 [36] Zhang S, Qian H J, Liu Z H, et al. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew Chem Int Ed Engl, 2019, 58(6): 1659 doi: 10.1002/anie.201811152 [37] Bachhuber F, von Appen J, Dronskowski R, et al. The extended stability range of phosphorus allotropes. Angew Chem Int Ed Engl, 2014, 53(43): 11629 doi: 10.1002/anie.201404147 [38] Ding K N, Wen L L, Huang S P, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Adv, 2016, 6(84): 80872 doi: 10.1039/C6RA10907A [39] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496 doi: 10.1038/35035045 [40] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4(5): 366 doi: 10.1038/nmat1368 [41] Wang N, Gao Y, Wang Y X, et al. Nanoengineering to achieve high sodium storage: A case study of carbon coated hierarchical nanoporous TiO2 microfibers. Adv Sci (Weinh), 2016, 3(8): 1600013 doi: 10.1002/advs.201600013 [42] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol, 2012, 7(5): 310 doi: 10.1038/nnano.2012.35 [43] Deshpande R, Cheng Y T, Verbrugge M W. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources, 2010, 195(15): 5081 doi: 10.1016/j.jpowsour.2010.02.021 [44] Zhao Y, Stein P, Bai Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources, 2019, 413: 259 doi: 10.1016/j.jpowsour.2018.12.011 [45] Oro S, Urita K, Moriguchi I. Nanospace-controlled SnO2/nanoporous carbon composite as a high-performance anode for sodium ion batteries. Chem Lett, 2017, 46(4): 502 doi: 10.1246/cl.161185 [46] Li W H, Hu S H, Luo X Y, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29(16): 1605820 doi: 10.1002/adma.201605820 [47] Zhu J L, Liu Z G, Wang W, et al. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano, 2021, 15(1): 1880 doi: 10.1021/acsnano.1c00048 [48] Liu S, Feng J K, Bian X F, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ Sci, 2016, 9(4): 1229 doi: 10.1039/C5EE03699B [49] Yao Y, Mcdowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett, 2011, 11(7): 2949 doi: 10.1021/nl201470j [50] Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett, 2014, 14(7): 4119 doi: 10.1021/nl501692p [51] Guo Y P, Wei Y Q, Li H Q, et al. Layer structured materials for advanced energy storage and conversion. Small, 2017, 13(45): 1701649 doi: 10.1002/smll.201701649 [52] Zhang Y Y, Rui X H, Tang Y X, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater, 2016, 6(10): 1502409 doi: 10.1002/aenm.201502409 [53] Wang F, Zi W W, Zhao B X, et al. Facile solution synthesis of red phosphorus nanoparticles for lithium ion battery anodes. Nanoscale Res Lett, 2018, 13(1): 356 doi: 10.1186/s11671-018-2770-4 [54] Jiang Z Z, Sen A. Iodine-doped poly(ethylenepyrrolediyl) derivatives: A new class of nonconjugated conducting polymers. Macromolecules, 1992, 25(2): 880 doi: 10.1021/ma00028a057 [55] Lai X Y, Halpert J E, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ Sci, 2012, 5(2): 5604 doi: 10.1039/C1EE02426D [56] Lou X ?, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater, 2006, 18(17): 2325 doi: 10.1002/adma.200600733 [57] Zhu L Q, Zhu Z X, Zhou J B, et al. Kirkendall effect modulated hollow red phosphorus nanospheres for high performance sodium-ion battery anodes. Chem Commun (Camb), 2020, 56(79): 11795 doi: 10.1039/D0CC05087C [58] Zhou J B, Liu X Y, Cai W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater, 2017, 29(29): 1700214 doi: 10.1002/adma.201700214 [59] Liu S, Xu H, Bian X F, et al. Hollow nanoporous red phosphorus as an advanced anode for sodium-ion batteries. J Mater Chem A, 2018, 6(27): 12992 doi: 10.1039/C8TA03301C [60] Santhoshkumar P, Shaji N, Nanthagopal M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. J Power Sources, 2020, 470: 228459 doi: 10.1016/j.jpowsour.2020.228459 [61] Wang C H, Kaneti Y V, Bando Y, et al. Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz, 2018, 5(3): 394 doi: 10.1039/C8MH00133B [62] Li S J, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications—A review. J Mater Chem A, 2016, 4(33): 12686 doi: 10.1039/C6TA03802F [63] Luo J M, Sun Y G, Guo S J, et al. Hollow carbon nanospheres: Syntheses and applications for post lithium-ion batteries. Mater Chem Front, 2020, 4(8): 2283 doi: 10.1039/D0QM00313A [64] Li Z, Wu H B, Lou X W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci, 2016, 9(10): 3061 doi: 10.1039/C6EE02364A [65] Liu T, Zhang L Y, Cheng B, et al. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater, 2019, 9(17): 1803900 doi: 10.1002/aenm.201803900 [66] Jiang J M, Nie G D, Nie P, et al. Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges. Nanomicro Lett, 2020, 12(1): 183 [67] Liu B Q, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano, 2019, 13(11): 13513 doi: 10.1021/acsnano.9b07428 [68] Yao S S, Cui J, Huang J Q, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater, 2018, 8(7): 1702267 doi: 10.1002/aenm.201702267 [69] Jin H L, Lu H, Wu W Y, et al. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70: 104569 doi: 10.1016/j.nanoen.2020.104569 [70] Yu L, Hu H, Wu H B, et al. Complex hollow nanostructures: Synthesis and energy-related applications. Adv Mater, 2017, 29(15): 1604563 doi: 10.1002/adma.201604563 [71] Jin T, Han Q Q, Wang Y J, et al. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries. Small, 2018, 14(2): 1703086 doi: 10.1002/smll.201703086 [72] Li W H, Yang Z Z, Jiang Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78: 455 doi: 10.1016/j.carbon.2014.07.026 [73] Sun X Z, Li W H, Zhong X W, et al. Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Mater, 2017, 9: 112 doi: 10.1016/j.ensm.2017.07.003 [74] Liu D, Huang X K, Qu D Y, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52: 1 doi: 10.1016/j.nanoen.2018.07.023 [75] Zhang L, Yu H Y, Wang Y L. Scalable method for preparing multi-walled carbon nanotube supported red phosphorus nanoparticles as anode material in lithium-ion batteries. Mater Lett, 2022, 312: 131638 doi: 10.1016/j.matlet.2021.131638 [76] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996 [77] Liu S, Xu H, Bian X F, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano, 2018, 12(7): 7380 doi: 10.1021/acsnano.8b04075 [78] Wang L Y, Guo H L, Wang W, et al. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 211: 499 doi: 10.1016/j.electacta.2016.06.052 [79] Liu Y H, Zhang A Y, Shen C F, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530 doi: 10.1021/acsnano.7b00557 [80] Zhang S L, Li X Y, Yang W T, et al. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces, 2019, 11(45): 42086 doi: 10.1021/acsami.9b13308 [81] Zhang S X, Liu H, Cao B, et al. An MXene/CNTs@P nanohybrid with stable Ti-O-P bonds for enhanced lithium ion storage. J Mater Chem A, 2019, 7(38): 21766 doi: 10.1039/C9TA07357D [82] Liu W L, Ju S L, Yu X B. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano, 2020, 14(1): 974 doi: 10.1021/acsnano.9b08282 [83] Liu W L, Du L Y, Ju S L, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano, 2021, 15(3): 5679 doi: 10.1021/acsnano.1c00924 [84] Li Y, Jiang S, Qian Y, et al. Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chem Commun (Camb), 2019, 55(47): 6751 doi: 10.1039/C9CC02971K [85] Yuan T, Ruan J F, Peng C X, et al. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Storage Mater, 2018, 13: 267 doi: 10.1016/j.ensm.2018.01.014 [86] Gao H, Zhou T F, Zheng Y, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv Energy Mater, 2016, 6(21): 1601037 doi: 10.1002/aenm.201601037 [87] Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater, 2016, 4: 130 doi: 10.1016/j.ensm.2016.04.003 [88] Wang J X, Huang Z P, Duan H L, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin, 2011, 24(1): 52 doi: 10.1016/S0894-9166(11)60009-8 [89] Christensen J, Newman J. Stress generation and fracture in lithium insertion materials. J Solid State Electrochem, 2006, 10(5): 293 doi: 10.1007/s10008-006-0095-1 [90] Lu Y Y, Ni Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater, 2015, 91: 372 doi: 10.1016/j.mechmat.2015.03.010 [91] Liu Y H, Liu Q Z, Jian C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun, 2020, 11(1): 2520 doi: 10.1038/s41467-020-16077-z [92] Bhandakkar T K, Johnson H T. Diffusion induced stresses in buckling battery electrodes. J Mech Phys Solids, 2012, 60(6): 1103 doi: 10.1016/j.jmps.2012.02.012 [93] Baggetto L, Danilov D, Notten P H L. Honeycomb-structured silicon: Remarkable morphological changes induced by electrochemical (de)lithiation. Adv Mater, 2011, 23(13): 1563 doi: 10.1002/adma.201003665 [94] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed Engl, 2013, 52(17): 4633 doi: 10.1002/anie.201209689 [95] Feng W C, Wang H, Jiang Y L, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater, 2022, 12(7): 2103343 doi: 10.1002/aenm.202103343 [96] Capone I, Aspinall J, Darnbrough E, et al. Electrochemo-mechanical properties of red phosphorus anodes in lithium, sodium, and potassium ion batteries. Matter, 2020, 3(6): 2012 doi: 10.1016/j.matt.2020.09.017 -