<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

埋入式水泥基球形壓電傳感器的制備表征及其在聲發射監測中的應用

代建云 劉宇 姜清輝 李應衛 馬永力

代建云, 劉宇, 姜清輝, 李應衛, 馬永力. 埋入式水泥基球形壓電傳感器的制備表征及其在聲發射監測中的應用[J]. 工程科學學報, 2023, 45(9): 1569-1582. doi: 10.13374/j.issn2095-9389.2022.07.13.002
引用本文: 代建云, 劉宇, 姜清輝, 李應衛, 馬永力. 埋入式水泥基球形壓電傳感器的制備表征及其在聲發射監測中的應用[J]. 工程科學學報, 2023, 45(9): 1569-1582. doi: 10.13374/j.issn2095-9389.2022.07.13.002
DAI Jianyun, LIU Yu, JIANG Qinghui, LI Yingwei, MA Yongli. Preparation and characterization of embedded cement-based spherical piezoelectric sensors and their application in acoustic emission monitoring[J]. Chinese Journal of Engineering, 2023, 45(9): 1569-1582. doi: 10.13374/j.issn2095-9389.2022.07.13.002
Citation: DAI Jianyun, LIU Yu, JIANG Qinghui, LI Yingwei, MA Yongli. Preparation and characterization of embedded cement-based spherical piezoelectric sensors and their application in acoustic emission monitoring[J]. Chinese Journal of Engineering, 2023, 45(9): 1569-1582. doi: 10.13374/j.issn2095-9389.2022.07.13.002

埋入式水泥基球形壓電傳感器的制備表征及其在聲發射監測中的應用

doi: 10.13374/j.issn2095-9389.2022.07.13.002
基金項目: 國家自然科學基金資助項目(51879127)
詳細信息
    通訊作者:

    姜清輝,E-mail: jqh1972@whu.edu.cn

    馬永力,E-mail: ylma@ncu.edu.cn

  • 中圖分類號: TU528

Preparation and characterization of embedded cement-based spherical piezoelectric sensors and their application in acoustic emission monitoring

More Information
  • 摘要: 研究設計、制備以及表征了一種基于球形壓電陶瓷殼的埋入式水泥基壓電聲發射傳感器。相比于傳統的片狀壓電聲發射傳感器只能接收特定方向信號的特點,該水泥基球形壓電傳感器具有全向接收信號的優勢。之后,將該水泥基球形壓電傳感器埋入鋼筋混凝土梁中,對梁試件四點彎加載過程進行了聲發射監測研究。對比分析了水泥基球形壓電傳感器與商業外貼式片狀壓電聲發射傳感器的監測結果,包括聲發射幅值、b值以及分形維數隨加載過程的演化關系。結果表明,相比于商業外貼式聲發射傳感器,水泥基球形壓電傳感器可以取得較好的監測效果,且在結構加載后期對低強度信號具有更高的靈敏度。兩種傳感器采集到的的聲發射信號的b值和分形維數均反映了結構破壞階段的演化,可以將b值和分形維數的持續下降并維持在較低水平作為該鋼筋混凝土梁試件最終破壞的預警標志。此外,相較于純商業聲發射傳感器組成的定位組,該埋入式水泥基球形壓電傳感器所在聲發射定位組捕捉到的破裂點數量大幅提高,有效提高了破裂點定位的準確度與靈敏度。

     

  • 圖  1  壓電陶瓷工作示意圖. (a)片狀壓電陶瓷; (b)球形壓電陶瓷殼

    Figure  1.  Piezoelectric ceramic working schematic: (a) piezoelectric ceramic sheet; (b) spherical piezoceramic shell

    圖  2  水泥基球形壓電傳感器. (a)示意圖;(b)實物圖

    Figure  2.  Cement-based spherical piezoceramic shell AE(Acoustic emission) sensor: (a) schematic diagram; (b) physical map

    圖  3  時域和頻域信號. (a)傳統傳感器時域信號;(b)傳統傳感器頻域信號;(c)球形壓電傳感器時域信號;(d)球形壓電傳感器頻域信號

    Figure  3.  Time and frequency response: (a) time domain signal of the traditional sensor; (b) frequency domain signal of the traditional sensor; (c) time domain signal of the spherical piezoelectric sensor; (d) frequency domain signal of the spherical piezoelectric sensor

    圖  4  配筋圖. (a)梁1; (b)梁2

    Figure  4.  Reinforcement diagram: (a) Beam 1; (b) Beam 2

    圖  5  預埋球形壓電陶瓷傳感器

    Figure  5.  Embedded cement-based spherical piezoceramic shell sensor

    圖  6  現場加載圖

    Figure  6.  Experimental setup

    圖  7  加載示意圖. (a)梁1; (b)梁2

    Figure  7.  Loading diagram: (a) Beam 1; (b) Beam 2

    圖  8  兩種傳感器幅值分布. (a), (c)球形傳感器;(b), (d)傳統傳感器

    Figure  8.  Amplitude of two types of sensors: (a), (c) spherical piezoelectric sensor; (b), (d) traditional sensor

    圖  9  兩種傳感器采集到信號數量對比. (a)梁1;(b)梁2

    Figure  9.  Comparison of the number of signals collected by the two types of sensors: (a) Beam 1; (b) Beam 2

    圖  10  b值與能量變化規律. (a)梁1;(b)梁2

    Figure  10.  Regulation of b-value and energy of the two beams: (a) Beam 1; (b) Beam 2

    圖  11  關聯維數和累計能量變化規律. (a)梁1;(b)梁2

    Figure  11.  Regulation of the fractal dimension and cumulative energy of the two beams: (a) Beam 1; (b) Beam 2

    圖  12  兩種傳感器接收信號示意圖. (a)球形; (b)片狀

    Figure  12.  Schematic of two types of sensors receiving signals: (a) flake sensor; (b) spherical sensor

    圖  13  傳感器布置圖. (a)梁1;(b)梁2

    Figure  13.  Sensor arrangement: (a) Beam 1; (b) Beam 2

    圖  14  兩種傳感器定位效果對比. (a)梁1傳統傳感器定位圖; (b)梁2傳統傳感器定位; (c)梁1球形壓電傳感器定位; (d)梁2球形壓電傳感器定位圖; (e)梁1最終破壞; (f)梁2最終破壞

    Figure  14.  Results of contradistinction of location in the two types of sensors: (a) AEL-1 of Beam 1; (b) AEL-1 of Beam 2; (c) AEL-2 of Beam 1; (d) AEL-2 of Beam 2; (e) final destruction of the Beam 1; (f) final destruction of the Beam 2

    圖  15  DIC監測圖及破壞局部放大圖. (a)梁1最終破壞DIC監測圖; (b)梁1最終破壞局部圖; (c)梁2最終破壞DIC監測圖; (d)梁2最終破壞局部圖

    Figure  15.  Digital image correlation and partial enlargement of the destruction: (a) DIC of Beam 1; (b) partial enlargement of the destruction of Beam 1; (c) DIC of Beam 2; (d) partial enlargement of the destruction of Beam 2

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yu J, Zhao Z H, Qin Y J. Damage of reinforced concrete shear beams based on acoustic emission and fractal. J Jilin Univ (Eng Technol Ed), 2021, 51(2): 620 doi: 10.13229/j.cnki.jdxbgxb20191191

    于江, 趙志浩, 秦擁軍. 基于聲發射和分形的鋼筋混凝土受剪梁損傷. 吉林大學學報(工學版), 2021, 51(2):620 doi: 10.13229/j.cnki.jdxbgxb20191191
    [2] Li W J, Kong Q Z, Ho S C M, et al. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater Struct, 2016, 25(11): 115031 doi: 10.1088/0964-1726/25/11/115031
    [3] Li M M. Fabrication of Cement Based Piezoelectric Sensor and Its Application Research [Dissertation]. Jinan: University of Jinan, 2013

    李蜜蜜. 水泥基壓電傳感器的制備及其應用研究[學位論文]. 濟南: 濟南大學, 2013
    [4] Qin L, Lu Y Y, Li Z J. Embedded cement-based piezoelectric sensors for acoustic emission detection in concrete. J Mater Civ Eng, 2010, 22(12): 1323 doi: 10.1061/(ASCE)MT.1943-5533.0000133
    [5] Lu Y Y, Li Z J, Liao W I. Damage monitoring of reinforced concrete frames under seismic loading using cement-based piezoelectric sensor. Mater Struct, 2011, 44(7): 1273 doi: 10.1617/s11527-010-9699-0
    [6] Qin L, Ren H W, Dong B Q, et al. Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials (Basel), 2014, 7(10): 6908 doi: 10.3390/ma7106908
    [7] Liu Y Q. Study of Accurate Localization Based on Embedded AE Transducers in Concrete [Dissertation]. Jinan: University of Jinan, 2013

    劉昱清. 基于埋入式聲發射傳感器的混凝土精確定位試驗研究[學位論文]. 濟南: 濟南大學, 2013
    [8] Xu Y S. Concrete Structure Health Monitoring Based on Piezoelectric Composite Acoustic Emission Sensor [Dissertation]. Jinan: University of Jinan, 2016

    徐躍勝. 基于聲發射傳感器的混凝土結構健康監測研究[學位論文]. 濟南: 濟南大學, 2016
    [9] Li J P. Research on Acoustic Emission Characteristics of Concrete Based on Embedded Piezoelectric Sensor [Dissertation]. Jinan: University of Jinan, 2020

    李加鵬. 基于埋入式壓電傳感器的混凝土聲發射特性研究[學位論文]. 濟南: 濟南大學, 2020
    [10] Zhou H J, Liu Y Q, Lu Y Y, et al. In-situ crack propagation monitoring in mortar embedded with cement-based piezoelectric ceramic sensors. Constr Build Mater, 2016, 126: 361 doi: 10.1016/j.conbuildmat.2016.09.050
    [11] Kong Q Z, Fan S L, Mo Y L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: Part II. Numerical and experimental verifications. Smart Mater Struct, 2017, 26(9): 095051 doi: 10.1088/1361-665X/aa80ef
    [12] Alkoy S. Fabrication and properties of thin-shell monolithic piezoelectric ceramic transducers. J Mater Sci, 2007, 42(16): 6742 doi: 10.1007/s10853-006-1477-6
    [13] Kim J O, Lee J G, Chun H Y. Radial vibration characteristics of spherical piezoelectric transducers. Ultrasonics, 2005, 43(7): 531 doi: 10.1016/j.ultras.2005.01.004
    [14] Kong Q Z, Fan S L, Bai X L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: Part I. Fabrication and electrical characterization. Smart Mater Struct, 2017, 26(9): 095050 doi: 10.1088/1361-665X/aa80bc
    [15] Zhou J. Research on Steel Uniform Corrosionmonitoring Based on Piezoelectric Sensor [Dissertation]. Harbin: Harbin Institute of Technology, 2015

    周俊. 基于封裝式壓電傳感器的鋼筋均勻銹蝕監測研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2015
    [16] Li X F, Peng X L, Lee K Y. The static response of functionally graded radially polarized piezoelectric spherical shells as sensors and actuators. Smart Mater Struct, 2010, 19(3): 035010 doi: 10.1088/0964-1726/19/3/035010
    [17] Gu A J. Acoustic Emission Mechanisms and Characteristics of Damage Detection in Reinforced Concrete Components [Dissertation]. Zhenjiang: Jiangsu University, 2015

    顧愛軍. 鋼筋混凝土構件損傷檢測中的聲發射機理及特性研究[學位論文]. 鎮江: 江蘇大學, 2015
    [18] Shiotani T, Fujii K, Aoki T, Amou K. Evaluation of progressive failure using AE sources and improved b-value on slope model tests//Progress in Acoustic Emission VII. Tokyo: Japanese Society for NonDestructive Inspection, 1994: 529
    [19] Zeng Z W, Ma J, Liu L Q, et al. AE b-value dynamic features during rockmass fracturing and their significances. Seismology and Geology, 1995, 17(1): 7

    (曾正文, 馬瑾, 劉力強, 劉天昌, 等. 巖石破裂擴展過程中的聲發射b值動態特征及意義. 地震地質, 1995, 17(1):7
    [20] Liu X L, Liu Z, Li X B, et al. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads. Rock and Soil Mechanics, 2019, 40(S1): 267

    劉希靈, 劉周, 李夕兵, 等. 單軸壓縮與劈裂荷載下灰巖聲發射b值特性研究. 巖土力學, 2019, 40(S1):267
    [21] Gong C, Li C H, Zhao K. Study on b-value characteristics of acoustic emission of red sandstone during short-time creep process. J China Coal Soc, 2015, 40(Suppl 1): 85

    龔囪, 李長洪, 趙奎. 紅砂巖短時蠕變聲發射b值特征. 煤炭學報, 2015, 40(增刊 1):85
    [22] Zhou C B, Liu D, Jiang Q H. Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects. Rock Soil Mech, 2021, 42(12): 3335

    周超彪, 劉東, 姜清輝. 拉剪作用下類巖石試樣的力學特性與損傷破壞機制. 巖土力學, 2021, 42(12):3335
    [23] Colombo I S, Main I G, Forde M C. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals. J Mater Civ Eng, 2003, 15(3): 280 doi: 10.1061/(ASCE)0899-1561(2003)15:3(280)
    [24] Yang L. Experimental Study on Loading Failure Process of Reinforced Concrete Beams Based on Acoustic Emission Technology [Dissertation]. Shijiazhuang: Shijiazhuang Tiedao University, 2019

    楊磊. 基于聲發射技術的鋼筋混凝土梁加載破壞過程試驗研究[學位論文]. 石家莊: 石家莊鐵道大學, 2019
    [25] Liang Z Y, Gao F, Lin J T, et al. Fractal analysis of the process parameter of rock’s acoustic emission under uniaxial compression. Mech Eng, 2009, 31(1): 43

    梁忠雨, 高峰, 藺金太, 等. 單軸下巖石聲發射參數的分形特征. 力學與實踐, 2009, 31(1):43
    [26] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows. Phys D Nonlinear Phenom, 1999, 127(1-2): 48 doi: 10.1016/S0167-2789(98)00240-1
    [27] Lei X L, Masuda K, Nishizawa O, et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. J Struct Geol, 2004, 26(2): 247 doi: 10.1016/S0191-8141(03)00095-6
    [28] Xie H P. Introduction to Fractal-Rock Mechanics. Beijing: Science Press, 1996

    謝和平. 分形-巖石力學導論. 北京: 科學出版社, 1996
    [29] Zhou S X, Wang W N, Qin Y, et al. Characterization of crack resistance mechanism of fiberglass geogrid reinforced composite beam based on acoustic emission characteristic parameters. Mater Rep, 2021, 35(22): 22033

    周圣雄, 王威娜, 秦煜, 等. 基于聲發射特征參數的玻纖格柵復合梁阻裂機理表征. 材料導報, 2021, 35(22):22033
    [30] Song G X, Yang L H, Hu C Y, et al. Damage characteristics of glass fiber reinforced polymer-concrete composite beams based on fractal theory. Acta Mater Compos Sin, 2021, 38(6): 1870 doi: 10.13801/j.cnki.fhclxb.20200904.001

    宋廣信, 楊麗輝, 胡春陽, 等. 基于分形理論的玻璃纖維增強樹脂復合材料-混凝土組合梁損傷特性. 復合材料學報, 2021, 38(6):1870 doi: 10.13801/j.cnki.fhclxb.20200904.001
    [31] Zhang Q. The Research of Damage Identification in Reinforced Concrete Beam Based on Acoustic Emission [Dissertation]. Beijing: Beijing Jiaotong University, 2015

    張強. 基于聲發射技術的鋼筋混凝土梁損傷識別研究[學位論文]. 北京: 北京交通大學, 2015
    [32] Kang Y M. The AE Source Location Method for Rock-like Materials Based on Wavelet Analysis [Dissertation]. Shenyang: Northeastern University, 2009

    康玉梅. 基于小波分析的巖石類材料聲發射源定位方法研究[學位論文]. 沈陽: 東北大學, 2009
  • 加載中
圖(15)
計量
  • 文章訪問數:  316
  • HTML全文瀏覽量:  136
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-07-13
  • 網絡出版日期:  2023-01-12
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回