Preparation and characterization of embedded cement-based spherical piezoelectric sensors and their application in acoustic emission monitoring
-
摘要: 研究設計、制備以及表征了一種基于球形壓電陶瓷殼的埋入式水泥基壓電聲發射傳感器。相比于傳統的片狀壓電聲發射傳感器只能接收特定方向信號的特點,該水泥基球形壓電傳感器具有全向接收信號的優勢。之后,將該水泥基球形壓電傳感器埋入鋼筋混凝土梁中,對梁試件四點彎加載過程進行了聲發射監測研究。對比分析了水泥基球形壓電傳感器與商業外貼式片狀壓電聲發射傳感器的監測結果,包括聲發射幅值、b值以及分形維數隨加載過程的演化關系。結果表明,相比于商業外貼式聲發射傳感器,水泥基球形壓電傳感器可以取得較好的監測效果,且在結構加載后期對低強度信號具有更高的靈敏度。兩種傳感器采集到的的聲發射信號的b值和分形維數均反映了結構破壞階段的演化,可以將b值和分形維數的持續下降并維持在較低水平作為該鋼筋混凝土梁試件最終破壞的預警標志。此外,相較于純商業聲發射傳感器組成的定位組,該埋入式水泥基球形壓電傳感器所在聲發射定位組捕捉到的破裂點數量大幅提高,有效提高了破裂點定位的準確度與靈敏度。Abstract: In this study, an embedded cement-based piezoelectric sensor based on a spherical piezoelectric ceramic shell was designed, fabricated, and characterized. Compared with the conventional piezoelectric acoustic emission sensor (PAES), which is based on sheet piezoelectric ceramics and can receive signals only in a specific direction, the novel embedded cement-based spherical piezoelectric sensor (CSPS) has the potential for omnidirectional signal reception. The frequency response range of the embedded CSPS, tested using the pencil-lead break test, is 70–600 kHz, which can meet the requirements of acoustic emission testing of concrete structures. Thus, the four-point bending test of the concrete beam was monitored using the acoustic emission technique. The concrete beams with two failure modes, bending and compression–shear failure, were created. During the four-point bending test, the CSPS embedded into the concrete beams and the commercial PAES externally placed on the surface of the concrete structure were used for acoustic emission monitoring. Data such as acoustic emission amplitude, b-value, and fractal dimension were measured using the embedded CSPS and analyzed and compared using the external commercial PAES. The results showed that the data measured using the embedded CSPS are highly consistent with those measured using the external PAES. Notably, at the late stage of the experiment, the number of low amplitude signals measured using the embedded CSPS was several times higher than that measured using the external PAES, which demonstrates that the sensitivity of the embedded CSPS is better than that of the external commercial PAES. Furthermore, the curve of the b-value and fractal dimension of the two kinds of sensors (the embedded CSPS and the external PAES) showed evident phased characteristics in different loading stages. In the bending failure test of the concrete beam, the trend of the curve of the fractal dimension can be divided into three stages, which correspond to the three stages of bending failure. Moreover, when the b-value keeps decreasing and becomes stable at a low level, it indicates that the concrete beam has entered the final yield failure stage. Furthermore, the transformation of each failure stage is accompanied by a sudden increase in energy. In the compression–shear failure test of the concrete beam, the steep drop in the b-value and fractal dimension indicates the development and connection of large fractures. Therefore, these indices dynamically reflect the evolution of structural damage and can be used as an early warning index for the final failure of the concrete beam. Compared with the acoustic emission location results calculated by the commercial PAES, the number of acoustic emission location results calculated using the embedded CSPS was greatly increased, which effectively improved the accuracy and sensitivity of damage location analysis.
-
圖 3 時域和頻域信號. (a)傳統傳感器時域信號;(b)傳統傳感器頻域信號;(c)球形壓電傳感器時域信號;(d)球形壓電傳感器頻域信號
Figure 3. Time and frequency response: (a) time domain signal of the traditional sensor; (b) frequency domain signal of the traditional sensor; (c) time domain signal of the spherical piezoelectric sensor; (d) frequency domain signal of the spherical piezoelectric sensor
圖 14 兩種傳感器定位效果對比. (a)梁1傳統傳感器定位圖; (b)梁2傳統傳感器定位; (c)梁1球形壓電傳感器定位; (d)梁2球形壓電傳感器定位圖; (e)梁1最終破壞; (f)梁2最終破壞
Figure 14. Results of contradistinction of location in the two types of sensors: (a) AEL-1 of Beam 1; (b) AEL-1 of Beam 2; (c) AEL-2 of Beam 1; (d) AEL-2 of Beam 2; (e) final destruction of the Beam 1; (f) final destruction of the Beam 2
圖 15 DIC監測圖及破壞局部放大圖. (a)梁1最終破壞DIC監測圖; (b)梁1最終破壞局部圖; (c)梁2最終破壞DIC監測圖; (d)梁2最終破壞局部圖
Figure 15. Digital image correlation and partial enlargement of the destruction: (a) DIC of Beam 1; (b) partial enlargement of the destruction of Beam 1; (c) DIC of Beam 2; (d) partial enlargement of the destruction of Beam 2
259luxu-164 -
參考文獻
[1] Yu J, Zhao Z H, Qin Y J. Damage of reinforced concrete shear beams based on acoustic emission and fractal. J Jilin Univ (Eng Technol Ed), 2021, 51(2): 620 doi: 10.13229/j.cnki.jdxbgxb20191191于江, 趙志浩, 秦擁軍. 基于聲發射和分形的鋼筋混凝土受剪梁損傷. 吉林大學學報(工學版), 2021, 51(2):620 doi: 10.13229/j.cnki.jdxbgxb20191191 [2] Li W J, Kong Q Z, Ho S C M, et al. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater Struct, 2016, 25(11): 115031 doi: 10.1088/0964-1726/25/11/115031 [3] Li M M. Fabrication of Cement Based Piezoelectric Sensor and Its Application Research [Dissertation]. Jinan: University of Jinan, 2013李蜜蜜. 水泥基壓電傳感器的制備及其應用研究[學位論文]. 濟南: 濟南大學, 2013 [4] Qin L, Lu Y Y, Li Z J. Embedded cement-based piezoelectric sensors for acoustic emission detection in concrete. J Mater Civ Eng, 2010, 22(12): 1323 doi: 10.1061/(ASCE)MT.1943-5533.0000133 [5] Lu Y Y, Li Z J, Liao W I. Damage monitoring of reinforced concrete frames under seismic loading using cement-based piezoelectric sensor. Mater Struct, 2011, 44(7): 1273 doi: 10.1617/s11527-010-9699-0 [6] Qin L, Ren H W, Dong B Q, et al. Acoustic emission behavior of early age concrete monitored by embedded sensors. Materials (Basel), 2014, 7(10): 6908 doi: 10.3390/ma7106908 [7] Liu Y Q. Study of Accurate Localization Based on Embedded AE Transducers in Concrete [Dissertation]. Jinan: University of Jinan, 2013劉昱清. 基于埋入式聲發射傳感器的混凝土精確定位試驗研究[學位論文]. 濟南: 濟南大學, 2013 [8] Xu Y S. Concrete Structure Health Monitoring Based on Piezoelectric Composite Acoustic Emission Sensor [Dissertation]. Jinan: University of Jinan, 2016徐躍勝. 基于聲發射傳感器的混凝土結構健康監測研究[學位論文]. 濟南: 濟南大學, 2016 [9] Li J P. Research on Acoustic Emission Characteristics of Concrete Based on Embedded Piezoelectric Sensor [Dissertation]. Jinan: University of Jinan, 2020李加鵬. 基于埋入式壓電傳感器的混凝土聲發射特性研究[學位論文]. 濟南: 濟南大學, 2020 [10] Zhou H J, Liu Y Q, Lu Y Y, et al. In-situ crack propagation monitoring in mortar embedded with cement-based piezoelectric ceramic sensors. Constr Build Mater, 2016, 126: 361 doi: 10.1016/j.conbuildmat.2016.09.050 [11] Kong Q Z, Fan S L, Mo Y L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: Part II. Numerical and experimental verifications. Smart Mater Struct, 2017, 26(9): 095051 doi: 10.1088/1361-665X/aa80ef [12] Alkoy S. Fabrication and properties of thin-shell monolithic piezoelectric ceramic transducers. J Mater Sci, 2007, 42(16): 6742 doi: 10.1007/s10853-006-1477-6 [13] Kim J O, Lee J G, Chun H Y. Radial vibration characteristics of spherical piezoelectric transducers. Ultrasonics, 2005, 43(7): 531 doi: 10.1016/j.ultras.2005.01.004 [14] Kong Q Z, Fan S L, Bai X L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: Part I. Fabrication and electrical characterization. Smart Mater Struct, 2017, 26(9): 095050 doi: 10.1088/1361-665X/aa80bc [15] Zhou J. Research on Steel Uniform Corrosionmonitoring Based on Piezoelectric Sensor [Dissertation]. Harbin: Harbin Institute of Technology, 2015周俊. 基于封裝式壓電傳感器的鋼筋均勻銹蝕監測研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2015 [16] Li X F, Peng X L, Lee K Y. The static response of functionally graded radially polarized piezoelectric spherical shells as sensors and actuators. Smart Mater Struct, 2010, 19(3): 035010 doi: 10.1088/0964-1726/19/3/035010 [17] Gu A J. Acoustic Emission Mechanisms and Characteristics of Damage Detection in Reinforced Concrete Components [Dissertation]. Zhenjiang: Jiangsu University, 2015顧愛軍. 鋼筋混凝土構件損傷檢測中的聲發射機理及特性研究[學位論文]. 鎮江: 江蘇大學, 2015 [18] Shiotani T, Fujii K, Aoki T, Amou K. Evaluation of progressive failure using AE sources and improved b-value on slope model tests//Progress in Acoustic Emission VII. Tokyo: Japanese Society for NonDestructive Inspection, 1994: 529 [19] Zeng Z W, Ma J, Liu L Q, et al. AE b-value dynamic features during rockmass fracturing and their significances. Seismology and Geology, 1995, 17(1): 7(曾正文, 馬瑾, 劉力強, 劉天昌, 等. 巖石破裂擴展過程中的聲發射b值動態特征及意義. 地震地質, 1995, 17(1):7 [20] Liu X L, Liu Z, Li X B, et al. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads. Rock and Soil Mechanics, 2019, 40(S1): 267劉希靈, 劉周, 李夕兵, 等. 單軸壓縮與劈裂荷載下灰巖聲發射b值特性研究. 巖土力學, 2019, 40(S1):267 [21] Gong C, Li C H, Zhao K. Study on b-value characteristics of acoustic emission of red sandstone during short-time creep process. J China Coal Soc, 2015, 40(Suppl 1): 85龔囪, 李長洪, 趙奎. 紅砂巖短時蠕變聲發射b值特征. 煤炭學報, 2015, 40(增刊 1):85 [22] Zhou C B, Liu D, Jiang Q H. Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects. Rock Soil Mech, 2021, 42(12): 3335周超彪, 劉東, 姜清輝. 拉剪作用下類巖石試樣的力學特性與損傷破壞機制. 巖土力學, 2021, 42(12):3335 [23] Colombo I S, Main I G, Forde M C. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals. J Mater Civ Eng, 2003, 15(3): 280 doi: 10.1061/(ASCE)0899-1561(2003)15:3(280) [24] Yang L. Experimental Study on Loading Failure Process of Reinforced Concrete Beams Based on Acoustic Emission Technology [Dissertation]. Shijiazhuang: Shijiazhuang Tiedao University, 2019楊磊. 基于聲發射技術的鋼筋混凝土梁加載破壞過程試驗研究[學位論文]. 石家莊: 石家莊鐵道大學, 2019 [25] Liang Z Y, Gao F, Lin J T, et al. Fractal analysis of the process parameter of rock’s acoustic emission under uniaxial compression. Mech Eng, 2009, 31(1): 43梁忠雨, 高峰, 藺金太, 等. 單軸下巖石聲發射參數的分形特征. 力學與實踐, 2009, 31(1):43 [26] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows. Phys D Nonlinear Phenom, 1999, 127(1-2): 48 doi: 10.1016/S0167-2789(98)00240-1 [27] Lei X L, Masuda K, Nishizawa O, et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. J Struct Geol, 2004, 26(2): 247 doi: 10.1016/S0191-8141(03)00095-6 [28] Xie H P. Introduction to Fractal-Rock Mechanics. Beijing: Science Press, 1996謝和平. 分形-巖石力學導論. 北京: 科學出版社, 1996 [29] Zhou S X, Wang W N, Qin Y, et al. Characterization of crack resistance mechanism of fiberglass geogrid reinforced composite beam based on acoustic emission characteristic parameters. Mater Rep, 2021, 35(22): 22033周圣雄, 王威娜, 秦煜, 等. 基于聲發射特征參數的玻纖格柵復合梁阻裂機理表征. 材料導報, 2021, 35(22):22033 [30] Song G X, Yang L H, Hu C Y, et al. Damage characteristics of glass fiber reinforced polymer-concrete composite beams based on fractal theory. Acta Mater Compos Sin, 2021, 38(6): 1870 doi: 10.13801/j.cnki.fhclxb.20200904.001宋廣信, 楊麗輝, 胡春陽, 等. 基于分形理論的玻璃纖維增強樹脂復合材料-混凝土組合梁損傷特性. 復合材料學報, 2021, 38(6):1870 doi: 10.13801/j.cnki.fhclxb.20200904.001 [31] Zhang Q. The Research of Damage Identification in Reinforced Concrete Beam Based on Acoustic Emission [Dissertation]. Beijing: Beijing Jiaotong University, 2015張強. 基于聲發射技術的鋼筋混凝土梁損傷識別研究[學位論文]. 北京: 北京交通大學, 2015 [32] Kang Y M. The AE Source Location Method for Rock-like Materials Based on Wavelet Analysis [Dissertation]. Shenyang: Northeastern University, 2009康玉梅. 基于小波分析的巖石類材料聲發射源定位方法研究[學位論文]. 沈陽: 東北大學, 2009 -