Adaptive dynamic mode decomposition and GA-SVM with application to fault classification of planetary bearing
-
摘要: 行星齒輪箱在運行過程中由于齒輪間的相互作用會產生強噪聲,導致行星軸承的故障特征被完全淹沒在背景噪聲中并難以提取,從而使得行星軸承故障分類的準確率較低。本文提出一種自適應動模式分解(ADMD)和遺傳算法優化支持向量機(GA-SVM)的行星軸承故障分類方法。首先,針對傳統動模式分解(DMD)中截斷秩無法準確選取的問題,定義了一種新的適應度函數,并采用改進的蚱蜢優化算法(IGOA)自適應選取最優截斷秩,進而實現對原始振動信號的降噪處理。然后對處理后的信號計算其歸一化后的復合精細多尺度離散熵(IRCMDE)并構成特征矩陣。最后采用遺傳算法優化支持向量機,構建GA-SVM分類模型,并將其應用到行星軸承故障診斷中。利用行星齒輪箱中行星軸承故障數據驗證了此方法的有效性和實用性,最終分類結果為96.43%,表明了該方法可以準確識別出行星軸承的故障類型。Abstract: Recently, planetary gearboxes have been widely used in helicopters, heavy trucks, ships, and other large and complex mechanical equipment because of their smooth transmission characteristics, small volume, and large reduction ratio. The planetary bearing, which plays a supporting role in the planetary gearbox, usually works in a worse environment but suffers from low speed and heavy load for a long time. Additionally, because of the strong noise generated by the interaction between gears during the operation of the planetary gearbox, the fault characteristics of planetary bearings are completely submerged in the background noise and are difficult to extract, which complicates classifying planetary-bearing faults accurately. Therefore, to effectively remove noise information from planetary-bearing signals, accurately extract fault information, and classify the fault types of planetary bearings, an adaptive dynamic mode decomposition (ADMD) and genetic algorithm and support vector machine (GA-SVM) with application to the fault classification of planetary bearing is proposed in this paper. The hard threshold selection of the traditional truncated rank cannot effectively process the time-domain vibration signals using the dynamic mode decomposition (DMD) method. Hence, this paper proposes improved grasshopper optimization algorithm (IGOA) to optimize the grasshopper optimization algorithm (GOA) by using dynamic weight and avoid the linear gradient mechanism, which cannot fully use the entire iterative process. Furthermore, IGOA can perform a global search to achieve the adaptive optimal parameter selection of the truncated rank. Besides, a new fitness function is defined that can effectively process the original time-domain signals. The traditional refined composite multiscale discrete entropy (RCMDE) is relatively dispersed, and it cannot characterize the features hidden in the signal better. Therefore, we normalize the RCMDE, forming the improved refined composite multiscale discrete entropy (IRCMDE). Then, the IRCMDE is calculated for the denoised signal, and a feature matrix is constructed to better mine the hidden features in the signal. Finally, GA is used to optimize the key parameters C and g of the SVM. The GA-SVM classification model is also constructed and applied to the bearing fault classification of the planetary gearbox, which can avoid the overfitting phenomenon in the training process and provide better generalization performance. Taking the planetary-bearing fault data in the planetary gearbox of Nanchang Hangkong University as the research object, the validity and practicability of the proposed method are verified, and the final classification result of the inner ring fault, outer ring fault, rolling body fault, and normal condition is 96.43%. In addition, this method can more accurately identify the fault types of planetary bearings and has better generalization ability than the empirical mode decomposition (EMD) signal processing method and the convolutional neural network (CNN) classification method.
-
表 1 行星齒輪箱的主要參數
Table 1. Main parameters of planetary gear box
Number of teeth
of sun wheelNumber of planetary
gear teethRing gear 28 36 (3) 100 表 2 不同方法對行星齒輪箱行星軸承分類結果
Table 2. Classification results of planetary bearings in planetary gearboxes by different methods
Methods Accuracy /% ADMD+GA-SVM 96.43 ADMD+CNN 78.57 EMD+GA-SVM 91.07 259luxu-164 -
參考文獻
[1] Lei Y G. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes. J Mech Eng, 2014, 50(3): 64 doi: 10.3901/JME.2014.03.064 [2] Wang T Y, Chu F L, Feng Z P. Meshing frequency modulation (MFM) index-based kurtogram for planet bearing fault detection. J Sound Vib, 2018, 432: 437 doi: 10.1016/j.jsv.2018.06.051 [3] Wang P, Li T Y, Gao X J, et al. Bearing fault signal denoising method of hierarchical adaptive wavelet threshold function. J Vib Eng, 2019, 32(3): 548 doi: 10.16385/j.cnki.issn.1004-4523.2019.03.021王普, 李天垚, 高學金, 等. 分層自適應小波閾值軸承故障信號降噪方法. 振動工程學報, 2019, 32(3):548 doi: 10.16385/j.cnki.issn.1004-4523.2019.03.021 [4] Zhao X M, Patel T H, Zuo M J. Multivariate EMD and full spectrum based condition monitoring for rotating machinery. Mech Syst Signal Process, 2012, 27: 712 doi: 10.1016/j.ymssp.2011.08.001 [5] Wang Z Y, Yao L G, Qi X L, et al. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning. J Vib Shock, 2021, 40(1): 110 doi: 10.13465/j.cnki.jvs.2021.01.015王振亞, 姚立綱, 戚曉利, 等. 參數優化變分模態分解與多域流形學習的行星齒輪箱故障診斷. 振動與沖擊, 2021, 40(1):110 doi: 10.13465/j.cnki.jvs.2021.01.015 [6] Zheng X W, Tang Y Y, Zhou J T. A framework of adaptive multiscale wavelet decomposition for signals on undirected graphs. IEEE Trans Signal Process, 2019, 67(7): 1696 doi: 10.1109/TSP.2019.2896246 [7] Lv Y, Yuan R, Wang T, et al. Health degradation monitoring and early fault diagnosis of a rolling bearing based on CEEMDAN and improved MMSE. Materials, 2018, 11(6): 1009 doi: 10.3390/ma11061009 [8] Zheng Y, Yue J H, Jiao J, et al. Fault feature extraction method of rolling bearing based on parameter optimized VMD. J Vib Shock, 2021, 40(1): 86 doi: 10.13465/j.cnki.jvs.2021.01.012鄭義, 岳建海, 焦靜, 等. 基于參數優化變分模態分解的滾動軸承故障特征提取方法. 振動與沖擊, 2021, 40(1):86 doi: 10.13465/j.cnki.jvs.2021.01.012 [9] Dang Z, Lv Y, Li Y R, et al. A fault diagnosis method for one-dimensional vibration signal based on multiresolution tlsDMD and approximate entropy. Shock Vib, 2019, 2019: 1 [10] Rowley C W, Mezi? I, Bagheri S, et al. Spectral analysis of nonlinear flows. J Fluid Mech, 2009, 641: 115 doi: 10.1017/S0022112009992059 [11] Taira K, Brunton S L, Dawson S T M, et al. Modal analysis of fluid flows: An overview. AIAA J, 2017, 55(12): 4013 doi: 10.2514/1.J056060 [12] Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn, 2011, 25(1): 249 [13] Dou D, Ye X D, Zhang G H. Entropy sequences and maximal entropy sets. Nonlinearity, 2006, 19(1): 53 doi: 10.1088/0951-7715/19/1/004 [14] Pincus S M. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci, 1991, 88(6): 2297 doi: 10.1073/pnas.88.6.2297 [15] Shi Y, Lin J H, Zhuang Z, et al. Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals. J Vib Shock, 2019, 38(8): 180 doi: 10.13465/j.cnki.jvs.2019.08.027施瑩, 林建輝, 莊哲, 等. 基于振動信號時頻分解-樣本熵的受電弓裂紋故障診斷. 振動與沖擊, 2019, 38(8):180 doi: 10.13465/j.cnki.jvs.2019.08.027 [16] Dang Z, Lv Y, Li Y R, et al. Optimized dynamic mode decomposition via non-convex regularization and multiscale permutation entropy. Entropy, 2018, 20(3): 152 doi: 10.3390/e20030152 [17] Lin L, Zhao D Y. Application of approximate entropy in acoustic emission signal processing. J Vib Shock, 2008, 27(2): 99 doi: 10.3969/j.issn.1000-3835.2008.02.023林麗, 趙德有. 近似熵在聲發射信號處理中的應用. 振動與沖擊, 2008, 27(2):99 doi: 10.3969/j.issn.1000-3835.2008.02.023 [18] Jiang Y, Mao D, Xu Y S. A fast algorithm for computing sample entropy. Adv Adapt Data Anal, 2011, 3(1?2): 167 doi: 10.1142/S1793536911000775 [19] Azami H, Escudero J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput Methods Programs Biomed, 2016, 128: 40 doi: 10.1016/j.cmpb.2016.02.008 [20] Rostaghi M, Azami H. Dispersion entropy: A measure for time-series analysis. IEEE Signal Process Lett, 2016, 23(5): 610 doi: 10.1109/LSP.2016.2542881 [21] Azami H, Rostaghi M, Abásolo D, et al. Refined composite multiscale dispersion entropy and its application to biomedical signals. IEEE Trans Biomed Eng, 2017, 64(12): 2872 doi: 10.1109/TBME.2017.2679136 [22] Achlerkar P D, Samantaray S R, Sabarimalai Manikandan M. Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system. IEEE Trans Smart Grid, 2018, 9(4): 3122 doi: 10.1109/TSG.2016.2626469 [23] Zhang S Q, Huang W J, Hu Y T, et al. Bearing fault diagnosis method based on EEMD approximate entropy and hybrid PSO–BP algorithm. China Mech Eng, 2016, 27(22): 3048 doi: 10.3969/j.issn.1004-132X.2016.22.012張淑清, 黃文靜, 胡永濤, 等. 基于總體平均經驗模式分解近似熵和混合PSO-BP算法的軸承故障診斷方法. 中國機械工程, 2016, 27(22):3048 doi: 10.3969/j.issn.1004-132X.2016.22.012 [24] Abdoos A A, Mianaei P K, Ghadikolaei M R. Combined VMD-SVM based feature selection method for classification of power quality events. Appl Soft Comput, 2016, 38(C): 637 [25] Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw, 2017, 105: 30 doi: 10.1016/j.advengsoft.2017.01.004 [26] Meraihi Y, Benmessaoud Gabis A, Mirjalili S, et al. Grasshopper optimization algorithm: Theory, variants, and applications. IEEE Access, 2021, 9: 50001 doi: 10.1109/ACCESS.2021.3067597 [27] Zhao R, Ni H, Feng H W, et al. A dynamic weight grasshopper optimization algorithm with random jumping // Advances in Intelligent Systems and Computing. Singapore: Springer Singapore, 2019: 401 [28] Yu J B, Hu T Z, Liu H Q. A new morphological filter for fault feature extraction of vibration signals. IEEE Access, 2019, 7: 53743 doi: 10.1109/ACCESS.2019.2912898 [29] Ma Y B, Lv Y, Yuan R, et al. Matching synchroextracting transform for mechanical fault diagnosis under variable-speed conditions. IEEE Trans Instrum Meas, 2022, 71: 1 [30] Wang D. Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients. Mech Syst Signal Process, 2018, 108: 360 doi: 10.1016/j.ymssp.2018.02.034 [31] Ren Y, Li W, Zhang B, et al. Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions. Appl Sci, 2019, 9(6): 1157 doi: 10.3390/app9061157 [32] Zhang S, Zhang Y X, Zhu J P. Rolling element-bearing feature extraction based on combined wavelets and quantum-behaved particle swarm optimization. J Mech Sci Technol, 2015, 29(2): 605 doi: 10.1007/s12206-015-0120-3 [33] Tang X B, Wang Z Q, Zhong L X. Microblog topic tracking model based on wikipedia semantic extension. Inf Sci, 2017, 35(2): 80 doi: 10.13833/j.cnki.is.2017.02.014唐曉波, 王中勤, 鐘林霞. 基于維基語義擴展的微博話題追蹤模型研究. 情報科學, 2017, 35(2):80 doi: 10.13833/j.cnki.is.2017.02.014 [34] Zhang Y, Wu L H, Fan X M, et al. Identification and classification of power quality disturbances based on modified S transform and GA-SVM. Guangdong Electr Power, 2021, 34(5): 99張殷, 武利會, 范心明, 等. 基于改進S變換和GA-SVM的電能質量擾動識別與分類. 廣東電力, 2021, 34(5):99 [35] Xu Y, Song W X, Feng J Y, et al. Minimum pulse width modulation of current harmonic for three-level inverter. J Shanghai Univ Nat Sci Ed, 2017, 23(5): 690徐淵, 宋文祥, 馮九一, 等. 三電平逆變器電流諧波最小PWM方法. 上海大學學報(自然科學版), 2017, 23(5):690 -