<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

島礁工程MICP加固技術研究進展

Advances in MICP reinforcement technology used in island engineering

  • 摘要: 近年來,微生物誘導碳酸鈣沉積技術(MICP)成為巖土工程領域的熱點方向,其中島礁背景下的MICP加固技術更是具有廣闊前景。本文系統總結了微生物礦化作用基本原理以及島礁工程建設中的MICP技術最新進展,得出了以下結論:MICP反應產物是碳酸鈣,與鈣質砂成分相同,滿足島礁生態需求;島礁溫度、pH條件適宜MICP反應,仍需深入研究輻射、波流條件等島礁特殊環境因素對MICP反應的影響;島礁微生物技術能大幅提升鈣質地層強度、剛度、樁基承載力、岸坡抗波流侵蝕能力,對于固島強島意義重大,需進一步通過現場原位加固試驗驗證該技術在島礁環境下的適用性。目前,MICP數值模型研究尚處于起步階段,主要通過單元試驗、模型試驗驗證,需開發可考慮島礁環境(溫度、pH、波流等)的MICP多過程數值理論模型,基于現場原位尺度試驗驗證其準確性。研究工作可為島礁環境下的MICP加固提供參考。

     

    Abstract: Being an environmentally friendly technology, Microbially Induced Calcium Carbonate Precipitation (MICP) has become a popular research topic in the field of geotechnical and environmental engineering, among which island microbial technology is a promising direction. This paper systematically summarizes the basic principles of microbial mineralization and the progress made in the use of MICP in construction work done on islands, such as the reinforcement of calcareous sand, protection of island slopes from erosion, and reinforcement of pile foundations, and the numerical modeling performed in island engineering. The following conclusions can be drawn: MICP produces calcium carbonate, which is the same as calcareous sand, and thus MICP can be used to meet the ecological reinforcement requirements of islands. The temperature and soil pH of the islands are suitable for MICP. Urease activity in soil nonlinearly increases as environmental temperature increases in the range from 5 ℃ to 40 ℃, and the soil pH influences pore solution concentrations, which in turn affects the deposition rate, yield, and morphology of calcium carbonate. The optimal pH value required for the mineralization caused by Sporosarcina pasteurii is approximately 9. However, the influence of the special environmental characteristics of islands, such as radiation, waves and currents, on MICP requires further study. Island microbial technology can be used to greatly enhance the strength and stiffness of calcareous sand in islands, the bearing capacity of pile foundations constructed in islands, and the erosion resistance of island slopes against waves and currents. The verification of the applicability of MICP in an island environment and the determination of the efficiency of bacterial urease activity, morphology and deposition rate of calcium carbonate in calcareous sand, physical and mechanical properties and uniformity of cemented calcareous sand layers in that environment require in-situ reinforcement tests. Most of the previous research on MICP is laboratory experiments. The spatiotemporal evolutions of the chemical substances used in various processes of MICP cannot be determined in real-time. The labor and other resources used in field experiments, which are highly dependent on field conditions, are expensive. Therefore, a reliable numerical model is highly important to understand the biochemical processes associated with MICP. However, research on MICP numerical models is still in its infancy, and currently, the MICP models are verified mainly using element and model tests. The development of a numerical model for the multiple processes of MICP suitable for the environmental conditions, such as temperature, soil pH, waves, and currents, of an island and verification of the accuracy of the model based on in situ reinforcement tests is extremely important. The findings can provide a reference for soil reinforcement in an island environment using MICP.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164