<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

二氧化鈦基材料光催化降解VOCs的研究進展

Research advancements in the use of TiO2-based materials for the photocatalytic degradation of volatile organic compounds

  • 摘要: 揮發性有機污染物(VOCs)大量排放導致的人體健康和環境問題已引起廣泛關注,如何高效環保地去除VOCs一直是催化化工行業領域的熱點和難題之一。光催化氧化技術(PCO)被認為是有效的環境污染物治理方法之一。TiO2作為研究時間最長的光催化劑,具有成本效益高、穩定性好和光催化降解能力強等優點。然而,無法利用可見光和光激發電荷載流子分離效率低等瓶頸問題始終制約著其進一步發展。通過改性來克服TiO2固有限制和提高TiO2光催化氧化降解VOCs能力勢在必行,立足于TiO2光催化去除VOCs的基本原理,面向影響光催化反應的關鍵因素,從摻雜、半導體復合、缺陷工程、晶面工程、載體吸附和形貌調控等幾個方面出發對近年TiO2基材料設計及其在光催化降解VOCs領域應用的研究進行了系統的歸納和總結,并對如何進一步改進基于TiO2的光催化氧化VOCs技術提出展望。

     

    Abstract: Human health and environmental concerns caused by the massive volatile organic compound (VOC) emission have attracted widespread attention recently. VOCs are toxic and difficult to eliminate; moreover, they come from a wide variety of sources. Efficient and environmentally friendly removal of VOCs has always been one of the primary concerns in the catalytic chemical industry. Presently, the commonly used methods for VOC removal include absorption?adsorption, biodegradation, thermal catalysis, and membrane separation. However, these methods have several drawbacks, such as high initial investment, expensive materials, high energy consumption, low catalyst efficiency, and incomplete treatment. Photocatalytic oxidation (PCO) technology is considered to be one of the effective methods of environmental pollution control. PCO can directly use solar energy to remove various environmental pollutants. Thus, PCO has inherent advantages such as low consumption, environmental protection, no secondary pollution, and convenience. Photocatalyst is a core step in the PCO process, and as aphotocatalyst studied for the longest time, titanium dioxide (TiO2) has the advantages of high cost-effectiveness, good stability, strong photocatalytic degradation capability, and producing no harmful byproducts. However, bottleneck problems such as the inability to utilize visible light and low separation efficiency of photoexcited charge carriers have always restricted its advancement. Thus, the inherent limitations of TiO2 need to be overcome, and its capability to degrade VOCs via PCO needs to be improved. These modifications can improve the PCO performance through the following mechanisms: (1) By introducing electron trapping levels in the bandgap, which will create some defects in the TiO2 lattice and help trap charge carriers, and (2) by slowing down the electron carrier loading rate to increase VOC degradation. Thus, considering the basic principle of TiO2 photocatalytic removal of VOCs, this study focuses on the key factors affecting the photocatalytic reaction. Beginning with aspects such as metal/nonmetal doping, semiconductor recombination, defect engineering, crystal plane engineering, carrier adsorption, and morphology control, the research on the design of TiO2-based materials and their application in the field of photocatalytic degradation of VOCs in recent years are systematically summarized; moreover, a brief introduction of its control parameters and applications in practical engineering and prospects on how to further improve the use of TiO2-based materials for the PCO technology of VOCs is provided. This review will provide parameter support and optimization suggestions for the research on the degradation of VOCs by TiO2-based photocatalytic materials to help researchers lay the foundation for future research.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164