<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

仿生撲翼飛行器能耗研究進展

Research progress on the energy consumption of bionic flapping-wing aerial vehicles

  • 摘要: 自然界中飛行生物利用肌肉、骨骼等結構的協同作用實現靈活、敏捷的飛行,具有撲動、懸停、滑翔等多種飛行模式。仿生撲翼飛行器是模擬鳥類和昆蟲等飛行模式的一類飛行器,通過機翼的周期性上下撲動產生飛行所需的升力和推力,具有隱蔽性好、能效高和飛行噪聲小等優點,得到了各研究機構的廣泛關注。由于撲翼飛行器自身的負載能力較小,很難攜帶大容量的電池,導致其續航時間有限。研究新型輕質高能量密度的電池和高仿生設計實現續航時間的提升,是撲翼飛行器重要的研究方向。但是,針對撲翼飛行器新型電池的研究還處于初級研發階段,尚不具備機載飛行測試的能力。研究人員從仿生機理分析、機構優化設計以及控制策略研究等方面入手,針對撲翼飛行器能耗問題開展了大量研究,并取得了階段性成果。總結了有關仿生撲翼飛行器能耗方面的研究進展,分析了靜態參數、動態參數和控制策略等對仿生撲翼飛行器能耗的影響,提出了降低能耗的措施,并對未來研究方向做出了展望。

     

    Abstract: Natural flyers use muscles, bones, and other structures in coordination to attain agile and nimble flight performance. They can fly in various complex environments through different flight modes, such as flapping, hovering, and gliding. The high-lift mechanism on flapping-wing flights plays a fundamental role in bionic flapping-wing aerial vehicle design. Bionic flapping-wing aerial vehicles operate in modes that mimic birds and insects. They rely on flapping wings to generate the lift and thrust required for flight. With the advantages of good concealment, high energy efficiency, and low flying noise, flapping-wing aerial vehicles have great potential in performing civil and military tasks. In the civil field, they can go deep into different complicated, unknown environments and perform environmental monitoring, rescue missions, and other special tasks that are difficult for human beings to complete. In the military field, they can replace human beings to complete covert reconnaissance and search tasks and play an important role in maintaining regional stability and preventing military invasions. Because of their broad application prospects, flapping-wing aerial vehicles have drawn considerable attention from researchers. Inspiration from the distinct features of natural flyers has influenced flapping-wing aerial vehicle design. Many attempts have been made to improve flapping-wing aerial vehicle performance. Because flapping-wing aerial vehicles have a small payload, they carry large-capacity batteries with difficulty, resulting in limited endurance. Under limited energy, the endurance time of flapping-wing aerial vehicles can be effectively increased by reducing energy consumption. An important research direction of flapping-wing aerial vehicles is to improve endurance by developing high energy density batteries and bionic design. Starting from bionic mechanism analysis, mechanism optimization design, and control strategy research, designers and engineers have conducted much research on the energy consumption of flapping-wing aerial vehicles, and achievements have been made frequently. However, their flight efficiency is still far from their natural counterparts. Many challenges remain in the bionic mechanism, fabrication, and autonomous flight of flapping-wing aerial vehicles. This paper summarizes the research progress on the energy consumption of bionic flapping-wing aerial vehicles. We discuss the main components of flapping-wing aerial vehicle energy consumption. Then, we analyze the effects of static parameters, dynamic parameters, and control strategies on the energy consumption of flapping-wing aerial vehicles. The energy consumption improvements of flapping-wing aerial vehicles with different parameter designs are compared. Finally, we propose measures to reduce energy consumption and discuss future research directions.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164