<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

腐蝕微生物種類及腐蝕機理研究進展

Species of corrosive microbes and corrosion mechanisms

  • 摘要: 目前微生物腐蝕(MIC)在工業環境中已成為普遍存在的嚴重問題,其是造成腐蝕損壞、設備故障和經濟損失的主要原因之一。雖然部分經典的腐蝕理論能夠解釋一些微生物腐蝕的現象,但這些機理的片面性也逐漸暴露出來。隨著對腐蝕菌種類的研究越來越多,人們對微生物腐蝕機理的認識也更加全面深入。本文重點介紹了易導致腐蝕的微生物種類及特征,如硫酸鹽還原菌、硝酸鹽還原菌和鐵氧化菌等,并總結了微生物腐蝕機理中基于生物能學和生物電化學的最新研究進展,包括微生物胞外電子傳遞過程、代謝產物腐蝕和濃差電池作用等理論,為工業中厭氧及好氧條件下微生物腐蝕的診斷、預測及防治提供了理論指導。

     

    Abstract: Corrosion is a global problem affecting a wide variety of the mechanical structures of piping, buildings, transportation, sewage, and automotive parts. Corrosion is an abiotic electrochemical reaction of metal oxidation with oxygen and water. Under anoxic conditions, the only reactant available for iron oxidation is water-derived protons. The kinetics of this reaction is extremely slow. However, this behavior contrasts with extreme corrosion observed in anoxic environments, demonstrating that biological processes play an important role in iron and steel corrosion. Therefore, among the different corrosion mechanisms, microbiologically influenced corrosion (MIC) is the most common and the most closely related to the complex processes connected with microorganism activity. Biocorrosion is a well-established, highly destructive phenomenon, and MIC can accelerate the deterioration of metal, plastics, stone, concrete, and wood, leading to human and environmental risks as well as substantial economic losses, which make MIC an important research topic. It is estimated that 20% or more of corrosion losses can be attributed to MIC. The main types of bacteria associated with corrosion are SRB, SRA, NRB, APB, IOB, IRB, SOB, and bacteria-producing organic acids, exopolymers, or slime. MIC is always associated with biofilm. Although classical corrosion theories can explain some MIC phenomena, the limitations of these mechanisms are exposed when MIC becomes a serious concern in real industrial applications. With increasingly more research on corrosive bacteria, people have a more comprehensive and in-depth understanding of the mechanism of MIC. In this work, the species and characteristics of microorganisms easily leading to corrosion are analyzed, such as sulfate-reducing bacteria, nitrate-reducing bacteria, and iron-oxidizing bacteria. Different mechanisms of MIC are discussed using the concepts of bioenergetics, electron transfer theories, and respiration types. The latest research progress on the microbial corrosion mechanism, including extracellular electron transport, metabolite corrosion, and the concentration differential battery, was reviewed. The process of microbial corrosion often involves more than one mechanism. Different microorganisms grow in different environments, and their metabolic processes differ. Therefore, obtaining a unified corrosion mechanism is difficult, so we can only judge which mechanism plays the main role according to the specific situation. This review provides theoretical guidance for the diagnosis, prediction, and prevention of microbial corrosion under anaerobic and aerobic conditions in the industry.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164