<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于腦電多視圖混合神經網絡的時空半監督睡眠分期

Multi-view hybrid neural network for spatiotemporal semi-supervised sleep staging

  • 摘要: 睡眠分期是評價睡眠質量的必要基礎,現階段的工作大部分采用全監督學習和單一維度視圖信息進行,這不僅需要技師進行大量的睡眠數據標注,還可能因特征提取不充分而導致分期準確率受限的問題。利用半監督學習策略,實現對腦電無標注數據的學習。提出一種多視圖混合神經網絡,首先用多通道視圖時頻域機制分別提取時域信號特征和空域信號特征,實現多視圖特征提取;再通過注意力機制加強對顯著性特征的提取;最后將上述混合特征融合并分類。在三個公開數據集和一個私有數據集中與全監督學習進行了對比評估,半監督學習取得平均準確率為81.0%,卡帕值為73.2%。結果表明,本文模型可以與全監督學習的睡眠分期模型相媲美,同時顯著減少技師標注數據的工作量。

     

    Abstract: Sleep takes approximately 1/3 of a person’s lifetime; therefore, its quality profoundly affects learning, physical recovery, and metabolism. Clinically relevant human physiological data are collected using polysomnography, which is analyzed by sleep technologists to determine sleep stages. However, the manual method is prone to having a cumbersome workload due to a large amount of data analysis and different data formats. Simultaneously, manually analyzed results are influenced by doctors’ medical clinical experience, which may cause inconsistent diagnoses. Recently, with the development of artificial intelligence, computer science, other technologies, and their interdisciplinarity, a series of typical achievements have been accomplished in intelligent diagnosis, laying the foundation for medical artificial intelligence in the sleep medicine field. In sleep research, realizing automatic sleep signal analysis and recognition assists doctors in diagnosis and reduces their workload, thus having important clinical significance and application value. Although deep neural networks are becoming popular for automatic sleep stage classification with supervised learning, large-scale, labeled datasets remain difficult to acquire. Learning from raw polysomnography signals and derived time-frequency image representations has been an interesting solution. However, extracting features from only a single dimension leads to inadequate feature extraction and, thus, limited accuracy. Hence, this paper aims to learn multi-view representations for physiological signals with semi-supervised learning. Specifically, we make the following contributions: (1) We propose a multi-view, hybrid neural network model containing a multichannel view time-frequency domain feature extraction mechanism, an attention mechanism, and a feature fusion module. Among these aspects, the multichannel view time-frequency domain mechanism extracts time domain and frequency domain signal features to achieve multi-view feature extraction. The attention mechanism module enhances salience features and achieves interclass feature extraction in the frequency domain. The feature fusion module fuses and classifies the above features. (2) A semi-supervised learning strategy is used to learn unlabeled electroencephalogram (EEG) data, which solves the problem of sleep data underutilization due to insufficient labeling of EEG signals in clinical practice. (3) Extensive experiments conducted on sleep stage classification demonstrate state-of-the-art performance compared with supervised learning and a semi-supervised baseline. Experimental results on three public databases (Sleep?EDF, DOD?H, and DOD?O) and one private database show that our semi-supervised method achieves accuracies of 81.6%, 81.5%, 79.2%, and 75.4%. The results show that our proposed model is comparable to a fully supervised sleep staging model while substantially reducing the technician’s workload in data labeling.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164