<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超低碳鋼中Al?Ti?O夾雜物的形貌演變和生成機理

黃日康 姜仁波 周秋月 任英 姜東濱 張立峰

黃日康, 姜仁波, 周秋月, 任英, 姜東濱, 張立峰. 超低碳鋼中Al?Ti?O夾雜物的形貌演變和生成機理[J]. 工程科學學報, 2023, 45(5): 755-764. doi: 10.13374/j.issn2095-9389.2022.03.02.001
引用本文: 黃日康, 姜仁波, 周秋月, 任英, 姜東濱, 張立峰. 超低碳鋼中Al?Ti?O夾雜物的形貌演變和生成機理[J]. 工程科學學報, 2023, 45(5): 755-764. doi: 10.13374/j.issn2095-9389.2022.03.02.001
HUANG Ri-kang, JIANG Ren-bo, ZHOU Qiu-yue, REN Ying, JIANG Dong-bin, ZHANG Li-feng. Morphology evolution and formation mechanism of Al–Ti–O inclusions in an ultra low carbon steel[J]. Chinese Journal of Engineering, 2023, 45(5): 755-764. doi: 10.13374/j.issn2095-9389.2022.03.02.001
Citation: HUANG Ri-kang, JIANG Ren-bo, ZHOU Qiu-yue, REN Ying, JIANG Dong-bin, ZHANG Li-feng. Morphology evolution and formation mechanism of Al–Ti–O inclusions in an ultra low carbon steel[J]. Chinese Journal of Engineering, 2023, 45(5): 755-764. doi: 10.13374/j.issn2095-9389.2022.03.02.001

超低碳鋼中Al?Ti?O夾雜物的形貌演變和生成機理

doi: 10.13374/j.issn2095-9389.2022.03.02.001
基金項目: 國家自然科學基金資助項目(U1860206, 51725402);河北省省級科技計劃資助項目(20311004D, 20591001D)
詳細信息
    通訊作者:

    任英,E-mail: yingren@ustb.edu.cn

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

  • 中圖分類號: TF769.4

Morphology evolution and formation mechanism of Al–Ti–O inclusions in an ultra low carbon steel

More Information
  • 摘要: 對超低碳IF鋼鈦合金化后的非金屬夾雜物進行了分析,研究發現鈦合金化后的夾雜物主要為Al2O3和Al?Ti?O夾雜物,沒有發現純TiOx夾雜物。鋼中生成的Al?Ti?O復合夾雜物從形貌上均可分為七種類型,四種具有Al2O3外層,另外三種無Al2O3外層。鈦合金化后,鋼中瞬態生成了大量無Al2O3外層的Al?Ti?O夾雜物,隨后夾雜物表面生成Al2O3外層,導致有Al2O3外層的Al?Ti?O夾雜物數量比例逐漸增加至78.0%。熱力學計算結果表明,隨著鋼中鈦含量的增加,夾雜物的轉變順序為固態Al2O3→液態Al?Ti?O→固態Ti2O3。確定了Al?Ti?O夾雜物的生成機理過程分為兩步:精煉過程鈦合金化后,當鋼液局部區域的鈦的質量分數高于0.42%時,[Ti]與鋼液反應瞬態生成Al2O3?TiOx或TiOx;隨著精煉過程中鈦元素的混勻,含TiOx夾雜物被鋼中[Al]還原,Al2O3?TiOx和TiOx夾雜物逐漸轉變,在夾雜物表面生成Al2O3

     

  • 圖  1  樣品加工示意圖

    Figure  1.  Schematic diagram of the sample machining process

    圖  2  精煉過程中鋼中夾雜物的變化. (a)夾雜物平均成分;(b)夾雜物數密度;(c)夾雜物平均尺寸;(d)夾雜物面積分數

    Figure  2.  Evolution of inclusions in the steel during the refining process: (a) average composition of oxide inclusions; (b) number density of oxide inclusions; (c) average diameter of oxide inclusions; (d) area fraction of oxide inclusions

    Values in the horizontal axis: 1—before adding titanium;2—one minute after adding titanium;3—four minutes after adding titanium;4—RH refining end;5—half of the casting cycle

    圖  3  精煉過程中鋼中夾雜物的成分和尺寸的關系. (a)加鈦前;(b)加鈦1 min;(c)加鈦4 min;(d)澆鑄一半

    Figure  3.  Relationship between the composition and size of inclusions in the steel during the refining process: (a) before adding titanium; (b) 1 min after adding titanium; (c) 4 min after adding titanium; (d) half of the casting cycle

    圖  4  鋼中典型Al–Ti–O夾雜物類型. (a)類型一;(b)類型二;(c)類型三;(d)類型四;(e)類型五;(f)類型六;(g)類型七

    Figure  4.  Typical Al–Ti–O inclusions in the steel: (a) type 1; (b) type 2; (c) type 3; (d) type 4; (e) type 5; (f) type 6; (g) type 7

    圖  5  各類Al–Ti–O夾雜物的數量對比

    Figure  5.  Comparison of the fraction of various Al–Ti–O inclusions

    圖  6  有Al2O3外層和無Al2O3外層的Al–Ti–O復合夾雜物的數量變化

    Figure  6.  Number density of Al–Ti–O inclusions with and without Al2O3 outer layer

    Values in the horizontal axis: 1—one minute after adding titanium;2—four minutes after adding titanium;3—RH refining end; 4—half of the casting cycle

    圖  7  不同類型Al–Ti–O復合夾雜物隨時間的變化

    Figure  7.  Evolution of various types of Al–Ti–O composite inclusions with time

    Values in the horizontal axis: 1—one minute after adding titanium;2—four minutes after adding titanium;3—RH refining end;4—half of the casting cycle

    圖  8  1600 ℃下鋼液中Al–Ti–O系夾雜物的穩定區域圖

    Figure  8.  Equilibrium diagram for Al–Ti–O system in the liquid steel at 1600 ℃

    圖  9  Al–Ti–O三元系的反應的吉布斯自由能的變化. (a)隨溫度的變化;(b)1600 ℃時隨鈦含量的變化

    Figure  9.  Changes in Gibbs free energy of Al–Ti–O ternary reaction: (a) with temperature; (b) with Ti content at 1600 ℃

    圖  10  1600 oC下鋼中鈦含量和氧含量對夾雜物成分的影響. (a)鈦含量;(b)氧含量

    Figure  10.  Effect of Ti and O contents on the composition of inclusions in the liquid steel at 1600 oC: (a) titanium content; (b) oxygen content

    圖  11  Al–Ti–O復合夾雜物形成機理示意圖

    Figure  11.  Schematic of the formation mechanism of Al–Ti–O inclusions

    表  1  IF鋼化學成分(質量分數)

    Table  1.   Chemical composition of the IF steel %

    CSiMnPS[Al]T.TiT.N
    0.00160.0050.130.0090.0050.040.0670.0025
    下載: 導出CSV

    表  2  不同工序鋼樣的總氧質量(質量分數)

    Table  2.   Total oxygen content of steel samples at different stages %

    ProcessBefore adding titanium1 min after
    adding titanium
    4 min after
    adding titanium
    RH refining endHalf of the casting cycle
    T.O0.00300.00310.00250.00260.0021
    下載: 導出CSV

    表  3  渣中TiO2含量及鋼中夾雜物數密度變化

    Table  3.   Changes of TiO2 content in slag and number density of inclusions in the steel

    ProcessTiO2 mass fraction in slag/%Number density of inclusions in the steel/mm–2
    Al–Ti–OType 1Type 4Type 2Type 5Type 3Type 6
    1 min after adding titanium0.620.640.0850.1700.0640.0430.1920.032
    4 min after adding titanium0.600.630.0130.2250.0250.1500.1000.100
    RH refining end0.750.420.0130.1890.0250.1010.0130.050
    Half of the casting cycle1.000.1400.0960.0110.02100.011
    下載: 導出CSV

    表  4  1600 ℃時鋼液中Al–Ti–O系的反應[9, 19, 26]

    Table  4.   Reactions of Al–Ti–O system in the liquid steel at 1600 ℃[9, 19, 26]

    No.Chemical reactionΔr$G^{\ominus} $/(J·mol1)ΔrG/
    (J·mol1)
    12[Ti] + 3[O] = (Ti2O3)$ - 1100392 + 356.7T$>0
    2 3[Ti] + 5[O] = (Ti3O5)$ - 1774016 + 569.9T$>0
    3[Ti] + 2[Al] + 5[O] = (Al2TiO5)$ - 1406806 + 400.9T$>0
    4[Ti] + (Al2O3) + 2[O] = (Al2TiO5)$ - 181978 + 7.3T$>0
    52[Ti] + (Al2O3) = 2[Al] + (Ti2O3) $124436 - 36.9T$>0
    69[Ti] + 5(Al2O3) = 10[Al] + 3(Ti3O5) $802092 - 258.3T$>0
    73[Ti] + $5({\rm{Al}}_2{\rm{O}}_3) $ = 4[Al] + 3(Al2TiO5)$ 26212.4 + 90.4T $>0
    82[Al] + 3[O] = (Al2O3)$ - 1224828 + 393.6T$<0
    92[Al] + (Ti2O3) = 2[Ti] + (Al2O3)$ - 124436 + 36.9T$<0
    1010[Al] + 3(Ti3O5) = 9[Ti] + 5(Al2O3)$ - 802092 + 258.3T$<0
    114[Al] + 3(Al2TiO5) = 3[Ti] + 5(Al2O3)$ - 1903721 + 765.2T$<0
    124[Al] + (Ti2O3) + 7[O] = 2(Al2TiO5)$ - 1713221 + 455.2T$>0
    136[Al] + (Ti3O5) + 10[O] = 3(Al2TiO5)$ - 2446403 + 632.9T$>0
    下載: 導出CSV

    表  5  1600 °C下的活度相互作用系數[26-27]

    Table  5.   Activity interaction parameters of elements in the steel at 1600 ℃[26-27]

    $ e_i^j $ (j→)CSiMnSAlTiO
    Al0.0910.0560.0350.0430.016?1.98
    Ti?0.1650.05?0.043?0.270.0240.013?1.8
    O?0.45?0.066?0.021?0.133?1.17?0.6?0.17
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang L F, Xu Z B, Jing X J, et al. Control of carbon & nitrogen content in IF steel. Continuous Cast, 1997, 22(6): 35

    張立峰, 許中波, 靖雪晶, 等. IF鋼中碳、氮含量的控制. 連鑄, 1997, 22(6):35
    [2] Xu S, Sun X J, Liang X K, et al. Characterization of TiC precipitation in high Ti wear-resistant steel solidification structure. J Iron Steel Res, 2021, 33(6): 521

    許帥, 孫新軍, 梁小凱, 等. 高鈦耐磨鋼凝固組織中TiC析出相表征. 鋼鐵研究學報, 2021, 33(6):521
    [3] Li C G, Zhou X G, Jiang X D, et al. Influence of cooling processes on microstructure and hardness of Ti micro-alloyed high strength steel. J Iron Steel Res, 2021, 33(9): 987 doi: 10.13228/j.boyuan.issn1001-0963.20200202

    李成剛, 周曉光, 蔣小冬, 等. 冷卻工藝對Ti微合金化高強鋼組織和硬度的影響. 鋼鐵研究學報, 2021, 33(9):987 doi: 10.13228/j.boyuan.issn1001-0963.20200202
    [4] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
    [5] Sui Y F, Sun G D, Zhao Y, et al. Evolution of titaniferous inclusions in IF steelmaking. J Univ Sci Technol Beijing, 2014, 36(9): 1174

    隋亞飛, 孫國棟, 趙艷, 等. IF 鋼中含Ti夾雜物的衍變規律. 北京科技大學學報, 2014, 36(9):1174
    [6] Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
    [7] Duan H J, Zhang L F, Fu J W, et al. Thermodynamic analysis of TiN formation in 439 ferritic stainless steel // National Proceedings of Conference on Metallurgical Physical Chemistry. Baotou, 2014

    段豪劍, 張立峰, 付俊偉, 等. 439鐵素體不銹鋼中TiN生成熱力學分析 // 2014年全國冶金物理化學學術會議論文集. 包頭, 2014
    [8] Wang Q M, Cheng G G. Metallurgy development of Ti-stabilized stainless steel. Chin J Eng, 2021, 43(11): 1447

    王啟明, 成國光. 含Ti不銹鋼冶金工藝進展. 工程科學學報, 2021, 43(11):1447
    [9] Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free (IF) steel slabs. Chin J Eng, 2020, 42(2): 194

    高帥, 王敏, 郭建龍, 等. IF鋼鑄坯厚度方向夾雜物分布及潔凈度評估. 工程科學學報, 2020, 42(2):194
    [10] Wang B, Li R C, Liu J S, et al. Composition optimization of DC06 IF steel refining slag and control of oxygen in steel and slag. J Iron Steel Res, 2021, 33(4): 293

    王寶, 李任春, 劉俊山, 等. DC06 IF鋼精煉渣成分優化及鋼-渣中氧的控制. 鋼鐵研究學報, 2021, 33(4):293
    [11] Liu Z N, Tao D P, Yao C L, et al. Phase equilibrium study and thermodynamic analysis on secondary refining process of titanium-microalloyed steel. J Iron Steel Res, 2019, 31(8): 702 doi: 10.13228/j.boyuan.issn1001-0963.20190004

    劉振楠, 陶東平, 姚春玲, 等. 鈦微合金鋼爐外精煉相平衡研究與熱力學分析. 鋼鐵研究學報, 2019, 31(8):702 doi: 10.13228/j.boyuan.issn1001-0963.20190004
    [12] Zhang L F. Non-metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2020

    張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2020
    [13] Zhang L F. Non-metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物: 基礎. 北京: 冶金工業出版社, 2019
    [14] Huang J, Min Y, Jiang M F, et al. Evolution of non-metallic inclusions during IF steel making process. J Northeast Univ, 2013, 34(3): 368 doi: 10.3969/j.issn.1005-3026.2013.03.016

    黃健, 閔義, 姜茂發, 等. IF鋼生產過程非金屬夾雜物的演變行為. 東北大學學報(自然科學版), 2013, 34(3):368 doi: 10.3969/j.issn.1005-3026.2013.03.016
    [15] Li P H, Ye J S, Hu W H, et al. Effect of Ti-alloyed on inclusions in Al-killed steel. J Iron Steel Res, 2013, 25(10): 20

    李朋歡, 葉健松, 胡文豪, 等. 鈦合金化對鋁鎮靜鋼中夾雜物的影響. 鋼鐵研究學報, 2013, 25(10):20
    [16] Jung I H, Decterov S A, Pelton A D. Computer application of thermodynamic databases to inclusion engineering. ISIJ Int, 2004, 44(3): 527 doi: 10.2355/isijinternational.44.527
    [17] Li M G, Matsuura H, Tsukihashi F. Evolution of Al–Ti oxide inclusion during isothermal heating of Fe–Al–Ti alloy at 1573 K (1300 °C). Metall Mater Trans B, 2017, 48(3): 1915 doi: 10.1007/s11663-017-0968-y
    [18] Zhang L F, Li Y L, Ren Y. Fundamentals of non-metallic inclusions in steel: Part II. Evaluation method of inclusions and thermodynamics of steel deoxidation. Iron & Steel, 2013, 48(12): 1

    張立峰, 李燕龍, 任英. 鋼中非金屬夾雜物的相關基礎研究(Ⅱ)——夾雜物檢測方法及脫氧熱力學基礎. 鋼鐵, 2013, 48(12): 1
    [19] Van Ende M A, Guo M X, Dekkers R, et al. Formation and evolution of Al–Ti oxide inclusions during secondary steel refining. ISIJ Int, 2009, 49(8): 1133 doi: 10.2355/isijinternational.49.1133
    [20] Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846

    潘明, 于會香, 季晨曦, 等. RH精煉過程中吹氧量對IF鋼潔凈度的影響. 工程科學學報, 2020, 42(7):846
    [21] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [22] Doo W C, Kim D Y, Kang S C, et al. The morphology of Al–Ti–O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
    [23] Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757

    顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
    [24] Yuan B H, Liu J H, Zhou H L, et al. Refining effect of IF steel produced by RH forced and natural decarburization process. Chin J Eng, 2021, 43(8): 1107

    袁保輝, 劉建華, 周海龍, 等. RH強制脫碳與自然脫碳工藝生產IF鋼精煉效果分析. 工程科學學報, 2021, 43(8):1107
    [25] Qin Y M, Wang X H, Huang F X, et al. Influence of reoxidation by slag and air on inclusions in IF steel. Metall Res Technol, 2015, 112(4): 405 doi: 10.1051/metal/2015025
    [26] Mitsutaka H, Kimihisa I. Thermodynamic Data for Steelmaking. Sendai: Tohoku University Press, 2010
    [27] Li N, Wang L, Li C Z, et al. Precipitation thermodynamics and formation mechanism of Ti inclusions in hypereutectoid tire cord steel. J Iron Steel Res, 2022, 34(3): 200 doi: 10.13228/j.boyuan.issn1001-0963.20210115

    李寧, 王璐, 李承志, 等. 過共析簾線鋼中Ti夾雜的析出熱力學與形成機制. 鋼鐵研究學報, 2022, 34(3):200 doi: 10.13228/j.boyuan.issn1001-0963.20210115
  • 加載中
圖(11) / 表(5)
計量
  • 文章訪問數:  549
  • HTML全文瀏覽量:  223
  • PDF下載量:  92
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-02
  • 網絡出版日期:  2022-11-16
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回