<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

不銹鋼渣高溫改性?析晶調控解毒研究現狀及發展趨勢

Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag

  • 摘要: 截止到目前,鋼鐵工業普通固廢(高爐鐵渣)循環利用技術取得了重要進展,但仍存在固廢頑疾亟需處理。不銹鋼冶煉產生的含鉻(Cr)渣長期以來缺乏有效的無害化處置方法,環境隱患巨大。國內外專家學者通過添加還原物質、高溫調質及調節冷卻方式等以改變渣中鉻元素的賦存狀態,控制Cr6+的溶出,進而實現不銹鋼渣的解毒。其中,高溫改性?析晶調控方法可以通過調整鋼渣組分和控制溫度制度促進含鉻尖晶石相的形成和長大,提高鉻元素在尖晶石相中的富集程度,有望成為最有效且安全的無害化處理技術,在近些年得到快速發展。本文從不銹鋼渣高溫改性?析晶調控解毒的熱力學機理和結晶動力學原理出發,針對不銹鋼渣的高溫調質改性、解毒方面的研究進展進行了綜述。基于高溫調質?選擇性析晶的核心問題,重點闡述了改善解毒效果的方法和措施。另外,針對不銹鋼渣高溫改性?析晶調控解毒存在的問題提出了今后的發展方向。

     

    Abstract: To date, the recycling technology of common solid waste (blast furnace iron slag) in the iron and steel industry has made important progress. However, persisting, stubborn solid waste problems urgently need to be solved. With the continuous growth of stainless steel production in China, the total amount of stainless steel slag has reached more than 10 million tons. This slag contains a lot of CaO, MgO, and SiO2, which are suitable building material additives. However, the harmful element chromium (Cr) in the slag and the dissolution characteristics of Cr6+ ions limit its large-scale application. For a long time, no effective, harmless disposal method has been available for Cr-containing slag, which brings great hidden danger to the environment. Given the characteristics of stainless steel slag, the current detoxification methods mainly include the solidification method, wet reduction, high-temperature ferrosilicon reduction, and high-temperature modification–crystallization control processes. Among these methods, high-temperature modification–crystallization control can promote Cr-containing spinel phase formation by adjusting steel slag compositions (e.g., basicity and oxidation-reduction properties) to improve the enrichment degree of Cr in the spinel phase. At the same time, by adjusting the slag cooling system (e.g., the quenching temperature and holding time) and reducing the slag viscosity, the nucleation and growth of the Cr-containing spinel phase can be improved, the precipitation amounts of the spinel phase are increased, and the occurrence probability of chromium in the matrix phase is reduced; thus, the detoxification of stainless steel slag can be achieved. Compared with the other three detoxification treatment methods, high-temperature modification–crystallization control has the advantages of a simple process, stable treatment effect, and large scale. In particular, solid wastes containing silicon, aluminum, and magnesium can be used as additives to adjust the composition of steel slag to realize a coordinated treatment of various solid wastes, which has very high economic value. In addition, using waste heat to modify steel slag directly after slag picking can substantially reduce energy consumption, should become one of the most promising harmless treatment approaches, and has recently attracted extensive attention. In this paper, the research progress of high-temperature modification and detoxification of stainless steel slag is reviewed according to its thermodynamic mechanism and crystallization kinetics principles. On the basis of the core problem of melt modification-selective crystallization, the methods and measures for improving the detoxification effect are emphasized. In addition, aiming at the existing problems in the high-temperature modification–crystallization control detoxification of stainless steel slag, development directions are proposed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164