<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鉀離子電池合金負極與電解液界面作用的研究進展

Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries

  • 摘要: 近年來,鉀離子電池(KIBs)因鉀元素豐度高、氧化還原電位低等優勢受到越來越多的關注。負極是電池的重要組成部分之一,直接影響著電池的安全性、穩定性和能量密度。其中,合金負極基于多電子反應機制能夠提供較高的理論比容量,有望提升全電池的能量密度。此外,其儲鉀電位遠離了金屬鉀的沉積/析出電位,保證了電池的安全性。然而,(去)合金化過程中劇烈的體積波動會引起電極材料的破裂和粉化,進而導致容量快速衰減。優化電解液構筑穩定的電極–電解液界面是一種切實有效穩定合金負極結構的方法,主要包括:調控固體電解質膜的組分、調節鉀離子的溶劑化結構、利用溶劑對電極的化學吸附作用等。它具備工藝簡單、成本低廉等優點。本文綜述了近年來鉀離子電池合金負極與電解液界面作用的相關研究進展,總結了電解液的優化策略,分析了合金負極的儲鉀機制和電化學性能,重點闡述了合金負極與電解液的界面作用機制,并對未來鉀離子電池電解液的發展提供了新的見解與思路。

     

    Abstract: Developing new energy, reducing fossil energy consumption, and building a green and low-carbon energy system are important strategies to achieve carbon neutrality. To realize the grid connection of new energy generation, rechargeable potassium-ion batteries (KIBs) are expected to be used in large-scale energy storage, considering sufficient potassium resources and potential high-energy density. Anode, an essential battery component, directly determines the battery safety, cycle life, and energy density. Among various anodes, alloys can provide high theoretical specific capacity based on the multi-electron reaction mechanism, which is promising in terms of improving the energy density of a full battery. Their K-storage voltages also stay away from the deposition/stripping potentials of metallic K, thereby enhancing battery safety. However, the dramatic volume variation upon alloying and dealloying leads to electrode pulverization and capacity fading in traditional carbonate-based electrolytes. An effective method for stabilizing an alloy-based anode structure is the construction of a stable electrode–electrolyte interface by electrolyte optimization, which has the advantages of a simple process and low cost. Accordingly, the utilization of interfacial engineering to achieve stable alloy anodes has been frequently reported in the past few years. This topic includes the following: (1) regulation of the components of solid electrolyte interphase (SEI) layers to improve mechanical strength and ionic conductivity, buffer volume fluctuation, and reduce electrode corrosion; (2) adjustment of the solvated structure of K+ to enhance the diffusion rate and inhibit the electrolyte decomposition; and (3) utilization of solvent molecular chemisorption on the electrode to induce its microstructure change, improve the electrolyte wetting ability, and relieve volume change. The SEI is a passivation film generated on the electrode surface at the initial battery operation stage. Research on its structure, component, and formation mechanism is still basic due to its instability and complexity and limited research methods. Whether the solvated structure of cation and electrolyte adsorption affect the SEI structure and composition remains unclear. How the solvated structure and the electrolyte adsorption improve the electrode stability must also be further studied. This review covers recent research progress on the interfacial interaction between alloy anodes and electrolytes in KIBs, summarizes the electrolyte optimization strategies, analyzes the potassium storage mechanisms and electrochemical performance of alloy anodes, and highlights the interfacial interaction mechanisms. More importantly, this paper provides new insights for the future development of KIB electrolytes.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164