<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

轉爐錳礦熔融還原工業試驗研究

Industrial test of smelting reduction for manganese ore in converter

  • 摘要: 為打通轉爐煉鋼過程錳礦熔融還原技術路徑,提高錳的收得率,對錳礦熔融還原過程和提高錳收得率的工藝參數進行了熱力學探討,并在某鋼廠200 t轉爐上開展了工業試驗研究。研究結果表明:高效穩定的鐵水“三脫”預處理技術是錳礦熔融還原技術成功的基本前提;通過理論計算,在爐渣中的(MnO)質量分數為5%~10%,終點C質量分數控制在0.13%~0.36%時,終點鋼液Mn質量分數可控制在0.3%以上。工業試驗主要通過采用雙渣法冶煉操作,在確保前期鐵水低磷的條件下盡可能控制少渣量、降低爐渣中氧化鐵,從而實現加入錳礦后提高錳收得率;并在現有工藝控制條件下,錳礦加入10 kg·t?1以內時,工業試驗可使錳礦還原過程錳收得率超過40%,平均為51.40%;為進一步提高錳收得率,建議嚴格將錳礦熔融還原渣料總量控制在40~60 kg·t?以內,石灰加入量控制在10~15 kg·t?1以內;研究結果為錳礦熔融還原技術的開發和應用提供重要參考。

     

    Abstract: The smelting reduction of manganese ore in the converter has been reported in China since the 1990s, and some steel enterprises have successively carried out industrial tests of this technology. However, the recovery ratio of Mn in manganese ore is low and fluctuates greatly due to various reasons such as inadequate hot-metal pretreatment, the poor bottom blowing effect of the converter furnace, and unreasonable positioning of the smelting end point. The smelting reduction of manganese ore has not been successfully applied in converter steelmaking and failed to benefit steel enterprises. In this study, the thermodynamic parameters of manganese ore melting reduction were discussed to improve the recovery ratio and yield of manganese and find a way to directly use manganese ore in a converter. The industrial test was carried out in a 200 t converter at a steel mill. Results showed that the efficient and stable ‘tri-de’ (dephosphorization/desulphurization/desiliconization) hot-metal pretreatment was the basic premise for the success of manganese ore smelting reduction. The theoretical calculation revealed that when the content of MnO in slag is 5%–10% and the terminal content of C is 0.13%–0.36%, the end-point of Mn in molten steel can be controlled above 0.3%. For an improved recovery ratio of Mn in manganese, the industrial test mainly adopted the smelting operation of double-slag operation to ensure that the amount of slag and iron oxide in the slag was reduced as much as possible under low phosphorus content in molten iron in the early stage. Under the existing process control conditions, the industrial test results showed a manganese yield of more than 40% and an average value of 51.40% when the added amount of manganese ore was under 10 kg·t?1. For an excellent manganese yield, the total amount of manganese smelting reduction slag must be strictly controlled from 40 kg·t?1 to 60 kg·t?1, and the amount of lime must be 10–15 kg·t–1. This work provides an important reference for the development and direct application of manganese ore in the converter.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164