<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

面向鋼鐵燒結煙氣NOx吸附凈化的吸附劑特性

Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas

  • 摘要: 吸附法是有望同時實現煙氣NOx超低排放深度凈化與資源化的關鍵技術,高效NOx吸附劑是其核心關鍵,然而目前針對滿足應用需求的NOx吸附劑仍缺乏系統認識。本文基于煙氣NOx凈化效率及材料熱穩定性實際需求,分析挑選了沸石、金屬氧化物、硅鋁膠等代表性吸附劑,研究了NOx在各吸附劑上的吸附穿透、吸附量、程序升溫脫附等關鍵特性,結合吸附劑孔道特性對比發現,中低硅H-ZSM-5沸石兼具較高NOx凈化深度、NOx吸附量、較低脫附溫度且可獲得更易于資源化的NOx解吸氣,因而可作為優選NOx吸附劑。進一步地,隨著吸附溫度升高,硅鋁比(w(SiO2)/w(Al2O3) )為25、38的H-ZSM-5的NOx吸附量均降低,其中低硅H-ZSM-5的NOx吸附量較高,但吸附傳質系數較低。本文可為煙氣NOx吸附凈化的效益環保技術提供指導。

     

    Abstract: Nitrogen oxides (NOx) are major air pollutants produced by fuel combustion that cause adverse effects on the environment and human health. The deep purification of NOx from ?ue gases has become a worldwide issue. In China, a rigorous ultra-low emission standard (ULES) of NOx ≤ 50 mg·m–3 has been implemented in the power and steel industries in recent years. NO2 is a valuable chemical feedstock that is worthy of being recycled from flue gas. Adsorption is a promising technology that can achieve deep purification and resource recovery of NOx from industrial flue gas, in which a high-performance NOx adsorbent plays a key role. However, a systematic understanding of NOx adsorbents for practical applications is still lacking. This study compares and analyzes the NOx adsorption and desorption performances of typical practical adsorbents including zeolites, metal oxides, and silica-alumina gels based on the practical need for both NOx purification efficacy and material thermal stability. NOx adsorption capacities, breakthrough curves, uptake curves, and temperature-programmed desorption (TPD) curves were also measured. Results show that compared to Fe–Mn–Ce and 13X as competitive adsorbents, H-ZSM-5_25 showed NOx deep purification (purification efficiency close to 100% before adsorption breakthrough), great NOx adsorption capacity (0.206 mmol·g–1), and high NO2 concentration ratio in desorption, which are likely due to its high NO catalytic oxidation rate and comparable NO2 physical adsorption rate. Regarding the desorption characteristics, H-ZSM-5_25 showed a bimodal TPD desorption peak with a lower desorption temperature (400–470 K) in the low-temperature region. Meanwhile, NO2 is the primary NOx component in the desorbed gas (adsorption-desorption enrichment ratio of NO2 being up to 57), which can easily be recovered using the liquefaction method. Furthermore, by comparing the adsorption performances on the H-ZSM-5 with different silica-to-alumina ratios, the NOx adsorption was found to decrease (from 0.706 to 0.206 mmol·g–1 for H-ZSM-5_25 and from 0.454 to 0.127 mmol·g–1 for H-ZSM-5_38) with increasing temperature (298–398 K). The dependence of the NO2 adsorption on the temperature was more significant for H-ZSM-5_25 compared to H-ZSM-5_38. Compared to H-ZSM-5_38, H-ZSM-5_25 with a lower silica-to-alumina ratio (consequently, more cation sites) rendered greater NO oxidation performance, a potentially higher NO2 adsorption capacity, and a greater decreasing trend of the adsorption capacity with increasing temperature. Results of adsorption kinetic experiments showed that the NOx mass transfer parameters on H-ZSM-5_25 were lower than those on H-ZSM-5_38 with a smaller primary micro pore channel. Results of the current work can provide technical references for economic flue gas denitrification.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164