<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

CFRP?泡沫鋁夾芯結構控制臂優化設計

Optimization design of the control arm of CFRP–aluminum foam sandwich structure

  • 摘要: 為滿足控制臂的輕量化設計需求,提出了一種采用碳纖維復合材料(CFRP)?泡沫鋁夾芯結構的汽車懸架控制臂,并對CFRP面板進行結構優化設計。通過泡沫鋁準靜態壓縮試驗驗證了泡沫鋁六面體胞孔模型的準確性,利用CFRP力學性能試驗獲得了碳纖維復合材料的性能參數,設計一種由CFRP?泡沫鋁夾芯結構本體和鋁合金連接件組成的懸架控制臂,控制臂本體與連接件之間采用膠?螺混合連接。在此基礎上,建立CFRP?泡沫鋁夾芯結構控制臂有限元模型,利用多層次優化方法對CFRP面板進行鋪層優化。結果表明,相較于鋼制控制臂,優化后夾芯結構控制臂的質量減少了26%,同時強度、剛度和模態性能都有所改善。

     

    Abstract: To meet the lightweight design requirements of the control arm, an automobile suspension control arm with a carbon fiber reinforced plastics (CFRP)–aluminum foam sandwich structure was proposed, and the structure optimization design of the CFRP panel was performed. The accuracy of the cellular pore model of aluminum foam hexahedron was verified by the quasi-static compression test of aluminum foam. The performance parameters of carbon fiber reinforced plastics were obtained by the mechanical property test of CFRP. A suspension control arm composed of a CFRP–aluminum foam sandwich structure body and an aluminum alloy connector was designed, and the adhesive-bolted hybrid joint was used to connect the two. Based on this, the finite element model of the control arm of the CFRP–aluminum foam sandwich structure was established. The porosity of aluminum foam in the sandwich was 55%. The multi-level optimization method was used to optimize the layering of the CFRP panels. Free size optimization was used to obtain the layered shape of CFRP under four classical ply angles, during which the mass of the panel was reduced while its stiffness improved. Based on the regularization of the CFRP layer, the ply thickness was discretized into manufacturing thickness by size optimization. Simultaneously, the number of layers of the panel was determined, and its mass was further reduced as the stiffness of the composite material is also dependent on the ply angle. Therefore, the arrangement order of the classical ply angle was obtained by ply stacking sequence optimization, further improving the panel stiffness. The results show that compared with the steel control arm, the mass of the optimized sandwich structure control arm was reduced by 26%. Simultaneously, the maximum stress at the foam aluminum sandwich was reduced from 225.6 MPa before optimization to 151.2 MPa. The safety factor and the failure coefficient of the CFRP panel after optimization were 1.1 and 0.81, respectively, both meeting the strength requirements. From the stiffness perspective, the longitudinal stiffness of the optimized control arm increased by 54.7% compared to the initial control arm of the sandwich structure, 103.2% compared to the steel control arm, and the lateral stiffness increased by 37% compared to the initial control arm of the sandwich structure and 56% compared to the steel control arm, respectively. Thus, the stiffness improvement effect was obvious. The first-order modal frequency of the optimized control arm was 785 Hz, 573.1 Hz higher than that of the steel control arm, and the vibration performance was significantly improved.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164