<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

MXenes在鋰離子電池負極材料中的應用

Application of MXenes as an anode materials for lithium-ion batteries

  • 摘要: MXenes(Mn+1XnTx)是一類二維無機化合物材料,它由幾個原子層厚度的過渡金屬氮化物、碳化物或碳氮化物構成。由于具有大的比表面積、快速充放電性能和小的體積變化等優點,MXenes受到越來越多研究人員的關注。研究者希望能夠利用MXenes材料研發出具有優異電化學性能的鋰離子電池負極材料,從而提高電池的能量密度和壽命。然而MXenes材料制備過程中產生的層間堆積和坍塌限制了其進一步的發展。目前,研究人員通過將MXenes與其他材料復合制備出具有新結構的材料,不僅可以擴大層間距,改善材料結構,還有助于改進材料的電化學性能。本文介紹了MXenes與碳納米材料、過渡金屬氧化物、過渡金屬硫化物和硅等材料復合改性來提高材料電化學性能的研究策略,并探討了MXenes和堿金屬等材料復合實現穩定無枝晶的鋰離子電池金屬負極的方案。最后,闡述了MXenes應用在鋰離子電池負極材料中面臨的挑戰,并作出了展望。

     

    Abstract: MXenes are a class of two-dimensional inorganic materials comprising transition-metal carbides, nitrides, or carbonitrides of several atomic layers thick. Their general formula is (Mn+1XnTx), where M is a transition metal, such as Ti, n is the number of atomic layers, X is carbon and/or nitrogen, and Tx is the functional group introduced in the reaction process, such as OH, H, or F. They are obtained from the MAX precursor (Mn+1AXn, where A is a group of 13 or 14 elements, such as Al and Si). In 2011, Gogotsi, Barsoum, et al. first reported the synthesis of Ti3C2Tx by selective etching of the Al layer using a Ti3AlC2 MAX phase precursor impregnated with HF solution. The advantageous properties of MXenes, such as large specific surface area, fast charge–discharge performance, and small volume change, have made them attractive for lithium-ion battery anode materials, as first reported by the group Simon and Gogotsi in 2012. Since then, much attention has been paid to MXenes. Researchers hope to use MXenes for lithium-ion battery anode materials with high capacity, high safety, and improved energy density and battery life. However, a multilayer MXene material will collapse or accumulate during the preparation process, resulting in a large reduction in the contact area, thus reducing the electron and ion transport capacity of the MXene material perpendicular to the layer structure. Hence, MXenes are usually combined with other materials to improve the obtained structure, expand the layer spacing, and help enhance their electrochemical properties. This paper reviews the approaches to improving the electrochemical properties of MXenes by doping with transition-metal oxides, transition-metal sulfides, and silicon, as well as the scheme to achieve a stable and dendrite-free metal anode by using MXenes and high-capacity anode materials. Last, future challenges faced by MXenes as anode materials for lithium-ion batteries are analyzed and prospected.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164