<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

直接甲醇燃料電池(DMFC)陽極過渡金屬基催化劑的研究進展

Research progress in anode transition metal-based catalysts for direct methanol fuel cell

  • 摘要: 發展可替代能源對緩解全球能源問題具有重要意義。直接甲醇燃料電池(DMFC)因其工作溫度低、能量密度高以及低污染物排放特性正逐漸成為最有發展前景的便攜式能源技術之一。目前,其商業化進程主要取決于陽極甲醇氧化反應(MOR)的動力學快慢。貴金屬作為最常用的陽極催化劑得到了廣泛的研究,但是其稀缺性以及易受COads中間產物中毒影響限制了其應用。考慮到以上問題,具有優異抗中毒能力的低Pt或者非Pt納米催化劑的設計和研發變得十分重要。本文從DMFC陽極電催化原理出發,總結了過渡金屬基催化劑(過渡金屬?貴金屬催化劑、過渡金屬催化劑以及自支撐催化劑)在MOR中的研究進展。重點強調了納米催化劑的組成成分、多孔結構、高指數面、晶體缺陷以及頂點增強效應等對其電化學性能的影響。最后,展望了過渡金屬基電催化劑在DMFC中所面臨的機遇和挑戰。

     

    Abstract: The development of alternative energy resources is of great significance to alleviate the global energy issue. The direct methanol fuel cell (DMFC) is gradually becoming one of the most promising portable energy technologies due to the merits of low operating temperature, high energy density, and low pollutant emission. Currently, its commercialization process mainly depends on the kinetics of the anodic methanol oxidation reaction (MOR). Noble metals have been widely studied as the most commonly used anode catalysts. However, high prices and limited reserves have severely hindered their further development. In addition, the active surface of Pt is susceptible to the poison of COads intermediate products, leading to the rapid loss of the catalytic activity due to blocked Pt sites. Considering the above problems, the design and development of low Pt or non-Pt nanocatalysts with an excellent antipoisoning ability have become very important. Transition metals have been widely used as promising substitutes for noble metal catalysts because of their abundant reserves, low price, and high catalytic activity. Among the transition metals studied, Ni, Cu, and Co have attracted sustained attention because of their high corrosion resistance. Owing to the ligand effect and synergistic effect, the addition of transition metals can effectively weaken the adsorption of COads intermediates on Pt sites. At the same time, non-noble transition metals are easy to form MOOH active species, which promote the oxidation of COads intermediates. Besides, methanol electrooxidation performance is closely related to the shape, structure, and composition of transition metals. From the principle of DMFC anode electrocatalysis, this review summarized the research progress of transition metal-based catalysts (transition metal-noble metal catalysts, transition metal catalysts, and self-supporting catalysts) in MOR. More importantly, the effects of the nanocatalyst composition, porous structure, high-index surface, crystal defects, and vertex enhancement on its electrochemical properties were emphasized. Finally, opportunities and challenges faced by transition metal-based electrocatalysts in DMFC were discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164