<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

超重力冶金:科學原理、實驗方法、技術基礎、應用設計

Supergravity metallurgy: principles, experimental methods, techniques, and applications

  • 摘要: 超重力顯著增大兩相間的重力差,可用于加速固?液、液?液、液?氣高溫黏稠混和體的相分離速度;超重力具有定向性,避免攪拌等技術產生的熔體湍流返混,可用于深度脫除金屬液中細小夾雜物;超重力條件下固?液界面張力微不足道,可容易實現微孔滲流;超重力條件下進行結晶凝固,按結晶順序實現固?液分離,可用于制備梯度材料;超重力加速固?液分離,可細化凝固組織晶粒,但對非共晶熔體也易產生宏觀偏析。將超重力技術應用于冶金及材料生產過程中,有望解決高溫冶金和材料制備的一些難題,如復雜礦冶金渣有價組分的分離提取、冶煉渣中金屬液的分離回收、多金屬的熔析結晶分離、復雜礦直接還原鐵的渣?金分離;在高端金屬材料方面,應用超重力技術,有望解決近零夾物金屬材料的精煉除雜難題,提高梯度功能材料、金屬?陶瓷復合材料、多孔金屬材料、器件材料表面電沉積修飾的制造水平。此外,在材料科學研究方面,超重力凝固可作為一種材料基因組高通量制備方法。

     

    Abstract: Supergravity significantly increases the gravity difference between two phases and thus can accelerate phase separation in solid–liquid mixtures, liquid–liquid mixtures, and liquid–bubble mixtures that have high temperatures and viscosities. Due to its directionality, supergravity avoids turbulent backmixing in melts, typically seen in agitation and other separation techniques, and is applicable toward the deep removal of fine inclusions in liquid metals. Under supergravity, solid–liquid interfacial tension is negligible and microporous seepage is straightforwardly achievable. Particle–liquid separation during crystallization can be performed under supergravity to prepare gradient materials. Supergravity accelerates particle–liquid separation, which refines solidified grains, but can also produce macroscopic segregation in noneutectic melts. Supergravity is widely applicable and beneficial to many fields. In metallurgy and materials production, supergravity can be used to improve the separation and extraction of valuable components from metallurgical slags of complex ores, separation and recovery of molten metal in smelting slags, melt crystallization separation of polymetals, and slag–metal separation of reduced iron from complex ores. In addition, supergravity can also be applied to high-end metal materials to improve the refinement and removal of impurities in metal materials toward near zero inclusion. Furthermore, supergravity can improve the manufacturing of functional gradient materials, metal–ceramic composites, porous metal materials, and device materials via electrodeposition modification. Finally, supergravity solidification can be used as a high-throughput method for the preparation of material genomes.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164