<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

紅磷的納米化及其在鈉離子電池中的應用

Preparation of nanosized red phosphorus and its application in sodium-ion batteries

  • 摘要: 鈉離子電池(SIBs)具有成本低廉、安全性高、環境友好等優點,且可以兼容現有的鋰離子電池生產設備,在大規模儲能以及電動汽車領域都有著廣泛的應用前景。在眾多的SIBs負極材料中,紅磷擁有超高的理論比容量(2596 mA·h·g–1)、合適的氧化還原電位(0.4 V vs Na/Na+)以及豐富的資源儲量,是極具潛力的SIBs負極材料。然而紅磷極低的本征電導率和在儲鈉過程中巨大的體積效應極大的限制了其容量利用率、長期循環穩定性和倍率性能。目前對紅磷基負極材料改性的最有效方法之一是紅磷的納米化,納米化可以改善紅磷的電化學活性和長期循環穩定性。為了便于研究者了解納米紅磷的制備方法,本文系統總結了納米紅磷的制備方法,包括球磨、升華冷凝、熱還原、氣相生長、溶劑熱、化學沉淀等,并對各種方法的優缺點進行了分析比較,最后對未來的研究方向進行了展望。希望能以此促進紅磷負極的發展及其在鈉離子電池中的實際應用。

     

    Abstract: Sodium-ion batteries (SIBs) are highly desirable energy storage devices because of their low cost, high safety, and environmental compatibility. Therefore, SIBs have wide application prospects in the fields of large-scale energy storage and electric vehicles. SIBs have a similar energy storage mechanism as that of lithium-ion batteries (LIBs) and can be fabricated using existing LIB production equipment. Thus, SIBs are the most promising alternative to LIBs. However, the radius of Na+ is ~34% larger than that of Li+; therefore, many electrode materials developed for LIBs are unsuitable for SIBs. The exploration of novel electrode materials for SIBs has garnered significant interest in recent years. Among various candidate anode materials for SIBs, red phosphorus is a promising material owing to its ultrahigh theoretical specific capacity (2596 mA·h·g–1), suitable oxidation–reduction potential (0.4 V vs Na/Na+), and abundance. However, the capacity utilization, long-term cycle stability, and rate performance of red phosphorous are limited due to its low intrinsic conductivity and a large volume effect upon sodium storage. At present, an effective approach for the modification of red phosphorus anodes is to prepare nanosized red phosphorus (NRP). Miniaturizing red phosphorus prevents structural damage via large volume changes during charge/discharge processes and also shortens Na+ transmission distances, which enables high electrochemical activity and long-term cycling stability. Herein, recent studies on NRP preparation for advanced SIBs are extensively reviewed. NRP preparation methods typically include ball milling, vaporization condensation, and chemical deposition. Other novel approaches such as thermal reduction, vapor growth, and solvothermal synthesis have also been reported. Ball milling is straightforward and scalable; however, strict guidelines are required to prevent the red phosphorus from burning and exploding, and slight oxidation and particle aggregation are unavoidable. Vaporization-condensation strategies are suitable for the uniform deposition of NRP onto a matrix but are limited by low phosphorus loading and residual white phosphorus. Chemical deposition methods are promising due to their simplicity, control over particle size, and scalability. There are two main chemical deposition strategies, i.e., the reduction of phosphorus-containing compounds and the dissolution and deposition of phosphorus amines. The former method is facile and compatible with ambient temperatures, while the latter method is safe, cost effective, and has high yields. Further studies should focus on morphology design, increasing phosphorus loading, and developing novel chemical reduction methods. We hope that this review promotes the development of red phosphorous anodes for application in SIBs.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164