<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

負載貴金屬的γ-Al2O3催化劑的抗燒結策略

Sintering resistance strategy of γ-Al2O3 loaded with precious metals

  • 摘要: 負載貴金屬的γ-Al2O3催化劑具有優異的有機物催化降解能力,被廣泛用于處理固定源和移動源排放產生的廢氣,高溫燒結是導致催化劑失活的重要因素之一,如何提高催化劑抗燒結性能備受關注。本文介紹了負載貴金屬的γ-Al2O3催化劑高溫燒結產生的原因和機理,分析表明高溫致使貴金屬發生Ostwald熟化和液化團聚以及γ-Al2O3晶相轉變降低催化劑比表面積,降低了催化劑活性。在此基礎上從貴金屬、載體以及載體與貴金屬間作用三個方面回顧和整理了提高催化劑高溫熱穩定性的方法,并重點闡述了貴金屬修飾、載體改性以及改變金屬與載體相互作用來達到提高熱穩定性的方法。此外,還介紹了其他如限域法、晶面控制等實現催化劑穩定性提高的方法,為催化劑的設計提供了新思路。最后,對γ-Al2O3基氧化催化劑的未來發展方向進行了展望。

     

    Abstract: γ-Al2O3 is an enormously important industrial material, especially used as catalysts, catalyst supports, and adsorbents due to its attractive structural, surface, and dielectric properties. Particularly, catalytic reduction of pollutants such as nitric oxide, as well as oxidation of hydrocarbons, is accomplished with precious metals such as platinum or palladium dispersed on the γ-Al2O3 surface. γ-Al2O3 loaded with precious metals has an excellent catalytic degradation ability of organic matter and is widely used to treat exhaust gas from stationary and mobile sources. High-temperature sintering is a major cause of catalyst deactivation. For example, at higher treatment temperatures (>800 ℃), γ-Al2O3 transforms into δ-Al2O3 and θ-Al2O3, decreasing in surface area and a change in dielectric properties. Additionally, in the reaction environment, supported metal nanoparticles grow in size, leading to the loss of catalyst activity. How to improve the anti-sintering performance of catalysts is a particular concern of this field. This review analyzes the reason and mechanism of the high-temperature sintering of γ-Al2O3 loaded with precious metal. A high temperature leads to Ostwald ripening and particle migration, coalescence of precious metals, and phase transformation of γ-Al2O3, reducing the specific surface area and activity of the catalyst. On this basis, the approaches for improving the high-temperature thermal stability of catalysts were reviewed and sorted out from three aspects, namely, precious metals, supports, and the interaction between them. First, the focus is on precious metal modification, carrier modification, and changing the interaction between them to improve thermal stability. Additionally, other methods, such as the confinement method and crystal plane control, are thoroughly examined and explained. These strategies provide new insights into catalyst design. Finally, the developmental trends of γ-Al2O3-based oxidation catalysts are broadly forecasted.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164