<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

深度學習在煉鋼過程中的研究進展及應用現狀

Research progress and application status of deep learning in steelmaking process

  • 摘要: 煉鋼過程是極其復雜的工業場景,影響因素多且安全性要求極高,是當前深度學習尚未大規模應用的領域之一。在對深度學習的原理和類型進行梳理的基礎之上,結合國內外應用實例,總結了深度學習在煉鋼過程中的發展歷程與研究現狀。指出了深度學習在煉鋼過程中應用主要有特征提取簡單、泛化能力強、模型可塑性高的優勢,同時也面臨數據依賴性高、預處理難度大、生產安全性有待驗證的挑戰。提出了未來隨著高精度傳感器的應用、物聯網的普及、計算硬件的迭代、以及算法的創新,深度學習模型可以更加有效地應用于煉鋼的更多場景中,將推動冶金工業智能化發展。

     

    Abstract: The steel industry is an important embodiment of national productivity and contributes to the development of the national economy and defense construction as a material foundation. Recently, China’s crude steel production ranked first in the world and in 2020, it exceeded 1 billion tons for the first time, reaching 1.065 billion tons. However, the steel industry is also a major energy consumer and polluter. In the current national coordination to do a good job of “carbon peak” and “carbon-neutral” background, the traditional steelmaking process urgently needs to be transformed into intelligent and green. Recently, as an important branch of machine learning, with artificial neural networks as the basic architecture, deep learning, a nonlinear modeling algorithm that can extract features from data and realize knowledge learning, has been applied in various industrial fields. The steelmaking process is an extremely complex industrial scenario with many influencing factors and high-security requirements. It is also an area where deep learning has not been applied on a large scale yet. Accordingly, in this study, the principles and types of deep learning were compared, and the development history and research status of deep learning in the steelmaking process with domestic and foreign application examples were summarized. The application of deep learning to the steelmaking process mainly has the advantages of simple feature extraction, strong generalization ability, and high model plasticity, but it also faces the challenges of high data dependency, difficult preprocessing, and verification of production safety. In the future, with the application of high-precision sensors, popularization of the Internet of Things, iteration of computing hardware, and innovation of algorithms, deep learning models can be effectively applied to more scenarios in steelmaking, which will promote the intelligent development of the metallurgical industry.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164