<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

地下空間工程服役安全的認識與思考

Understanding and considering service safety in underground space engineering

  • 摘要: 中國的地下空間工程規模越來越大。如何使地下空間工程在開挖、建造和服役期間最大限度的保持安全和穩定,是目前乃至將來必須重視的重要課題。在分析地下空間工程面臨的主要問題的基礎上,提出了地下空間工程服役安全的3個關鍵科學問題:多場耦合作用下結構體材料損傷劣化規律;循環動載作用下結構體的動態疲勞損傷特性;支護與圍巖的相互作用。總結和評述了在此方面的相關研究工作和最新進展。最后從宏觀上指出了地下空間工程未來的發展趨勢和需要重點關注和加強的基礎性研究工作。

     

    Abstract: With the increasing scale of underground space projects in China, the types of underground space development and utilization are characterized by diversification, deepening, and complexity. Moreover, many underground space projects have been transferred from the construction stage to the long-term, safe, and stable operation stage. At present, and even in the future, how to maintain the safety and stability of underground space engineering during excavation, construction, and service is an important topic that must be considered. Based on the analysis of the complex geological conditions faced by underground space engineering, the influence of construction quality on service safety, deterioration of structural performance caused by environmental factors and sudden disasters, and extensive development of underground space, this study identified three key scientific problems of service safety in underground space engineering, namely, the law of damage and deterioration of structural materials under multi-field coupling, dynamic fatigue damage characteristics of structures under cyclic dynamic load, and interaction between support and surrounding rock. This study summarized and commented on the failure process of rock and concrete in special environments, dynamic mechanical properties of rock and concrete under dynamic load, damage test and evaluation method of rock mass under explosion load, rock and concrete fatigue, surrounding rock stability analysis, support mechanism of underground space engineering, and other related research work and latest progress. Finally, this study specified the future development trend of this subject and the basic research work that needs to be focused on and strengthened, that is, developing new green building materials for underground space engineering, establishing a new support design theory, conducting underground space service safety research based on artificial intelligence, and building a full life-cycle underground space service risk analysis, prevention and control system, so as to provide scientific ideas and feasible methods to ensure the service safety of urban underground space engineering.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164