<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于機器學習的產品質量在線智能監控方法

Online intelligent product quality monitoring method based on machine learning

  • 摘要: 為了提高產品質量的穩定性和可靠性,利用機器學習方法實現產品質量在線監控、在線優化和在線預設定,是鋼鐵企業目前亟待解決的關鍵技術。針對企業需求,提出基于軟超球體算法的產品質量異常在線識別和異常原因診斷方法、基于流形學習的工藝參數在線優化方法和基于多變量統計過程控制的工藝規范制定方法。通過將上述方法進行系統集成,并利用工業互聯網技術和大數據分析方法,研發了產品質量在線智能監控系統。目前該系統已在鋼鐵企業十余條生產線上推廣應用,質量在線判定的準確率達到99.2%,在線檢測時間不到0.1 s。

     

    Abstract: In recent years, Chinese iron and steel enterprises have mainly adopted the “sampling after the event” method to inspect the product quality before it leaves the factory. Due to the inability to achieve quality inspection for all products, customers often claim and return defective products, leading to major economic losses in steel enterprises. To improve the stability and reliability of product quality, the use of machine learning methods to realize the online monitoring, optimization, and preset of product quality is the key technology to be solved in iron and steel enterprises. Therefore, the online identification and diagnosis of abnormal product quality based on the soft hypersphere, online optimization of the process parameters based on manifold learning and process specification formulation based on the multivariate statistical process control were proposed. In this study, integrated methods of online monitoring, diagnosis, and optimization of product quality were proposed in which the abnormal point of the product quality by the soft hypersphere method, based on the support vector data description, was identified online, and the process parameters were diagnosed through the contribution chart. Optimizing in real time, abnormal process parameters via a local projective transformation of neighbor points was then achieved. The process parameter setting model based on manifold learning by multiclass neighborhoods to extract the manifold of process parameters was established. Meanwhile, the process specification model, based on the maximum inner rectangle of the soft hypersphere, was established to obtain an effective control interval of the process parameters. Through system integration with the proposed methods and using industrial internet technology and big data analysis methods, the system of intelligent online monitoring of product quality has been successfully developed. At present, the system has been applied to more than ten production lines in iron and steel enterprises. The accuracy rate of online quality determination is 99.2%, and the online detection time is less than 0.1 s.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164