<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

隧道初支合理支護時機確定方法及其工程應用

Determination method and engineering application of reasonable installation timing of the initial ground support

  • 摘要: 將巖體破壞接近度指標(FAI)引入隧道支護設計,明確了圍巖臨界支護時機判別準則。基于有限差分數值計算程序,合理考慮巖體峰后應變軟化特性,建立了一種隧道最優支護時機確定方法。通過算例分析,定量探討了表征支護時機的重要參數,從工程角度闡釋了支護時機的本質意義。結果表明:巖體地質強度指標GSI由75減小至25時,支護時機提前8.32 m;巖石材料常數mi由20減小至10時,支護時機提前5.85 m;巖石單軸抗壓強度σci由80 MPa減小至40 MPa時,支護時機提前3.74 m;工程擾動參數D由0增加至0.8時,支護時機提前7.44 m。將建立方法在玉渡山隧道工程中進行應用,計算出研究區段的支護時機為3.3 m,經現場監測表明該方法有效、可行。該研究成果可為隧道支護體系的量化設計提供參考。

     

    Abstract: The surrounding rock support is a key issue in tunnel construction. The reasonable supporting time can not only ensure the safety of tunnel construction but also achieve the purpose of saving support costs. Currently, the support time determination mainly depends on on-site monitoring information and engineering experience, and there is still a lack of effective quantitative design methods. To overcome this deficiency, systematic research was conducted based on the case project of the Yudushan tunnel in the Yan-Chong expressway. The failure approach index was introduced in the tunnel support design, and the criterion of critical surrounding rock supporting time was defined. Based on the finite difference numerical calculation program and reasonable consideration of the post-peak strain softening characteristics of the rock mass, a method for determining an optimal tunnel supporting time was established. Through the analysis of numerical examples, the important parameters characterizing the supporting time were discussed quantitatively, and the essential significance of the supporting time was revealed from the engineering perspective. The results show that the supporting time increases by 8.32 m as the geological strength index is reduced from 75 to 25; the supporting time increases by 5.85 m as the intact rock material property, mi, is reduced from 20 to 10; the supporting time increases 3.74 m as the uniaxial compressive strength of rock, σci, is reduced from 80 to 40 MPa; the supporting time increases by 7.44 m as the engineering disturbance coefficient, D, is increased from 0 to 0.8. The proposed method was applied in the Yudushan tunnel project. The supporting time of the research section is 3.3 m. Field monitoring shows that the method is effective and feasible and provides a reference for the tunnel support system’s quantitative design.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164