<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

機器學習在深沖鋼質量自動判級中的應用

Application of machine learning in automatic discrimination of product quality of deep drawn steel

  • 摘要: 在流程工業中,生產過程需根據客戶對產品質量要求進行判級,以滿足客戶提出的產品質量需求。目前,企業主要采用“事后”抽檢方式,但因無法對所有產品實現在線自動判級,常發生索賠和退貨,導致我國鋼鐵企業每年近100億元損失。為了實現產品質量在線自動判級,提出基于高維數據非線性同等縮放與核簡支集類邊界確定相結合的質量在線智能判級方法。首先,將高維的工藝參數通過非線性同等縮放算法變換成低維的數據集,并對縮放后數據集進行聚類,分析工藝參數的類分布特征。然后,根據分類后樣本的質量指標值分布,采用核簡支集類邊界算法來確定不同產品質量級別的類邊界。最后,依據已確定的類邊界,通過質量指標預測實現產品在線判級。通過深沖鋼(IF鋼)應用實例,證實該方法在訓練階段的在線自動判級準確率達到97.2%,測試階段的準確率為96%。

     

    Abstract: In process industries, the discrimination of final product quality must be implemented in the manufacturing process. At present, the primary method is “after spot test ward,” but there is no other way to realize online automatic discrimination for all products, which frequently leads to customer return purchases and complaints about the product quality, and annual economic loss of 10 billion Yuan in Chinese steel enterprises. This paper proposed online product quality automatic discrimination method based on machine learning to realize online automatic discrimination for all products. First, multidimensional process parameters were mapped into a low-dimensional data set using nonlinear multidimensional parity scaling (MDPS), and the data set is clustered. The distribution feature in the data set was analyzed. The quality index values were then transformed into a low-dimensional map with the class labels determined by process parameter clustering, and the diverse class margins were determined using a support vector machine (SVM) with L2-soft margins. The kernel method set was used to reduce the number of support vectors to simplify the class boundary, and the reduced set determined the actual class margins. Finally, the quality indexes were predicted using machine learning algorithms, such as back-propagation network (BPN), long short-team memory (LSTM), kernel partial least squares (KPLS), and k-nearest neighbors (KNN), including the online automatic discrimination of product quality was realized using the determined class margins and the predicted values of quality indexes. The accuracy of the online automatic discrimination of steel types is up to 97% in the training stage and up to 96% in the testing stage based on industrial production data of interstitial-free (IF) steel.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164