<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

神經網絡在無人駕駛車輛運動控制中的應用綜述

Overview of the application of neural networks in the motion control of unmanned vehicles

  • 摘要: 無人駕駛車輛自身具有強烈的非線性、信號時延和參數不確定性,對它的控制還受到道路附著系數的變化、側向風等外界因素影響。因此傳統控制方法往往難以對其穩定和精確地控制。神經網絡所具有的學習能力、自適應能力和近似非線性映射的能力,為解決車輛模型參數的不確定性、外界的擾動以及車輛自適應控制問題提供了有效的途徑。針對上述幾個方面,對近幾年國內外學者將神經網絡應用到無人駕駛車輛運動控制中所取得的成果與進展進行了歸納分類,分別介紹了應用情況并對優缺點進行評價。最后總結了神經網絡在無人駕駛車輛運動控制中存在的主要問題,并展望了可能的發展方向。

     

    Abstract: This paper aims to introduce the application of neural networks in the motion control of unmanned vehicles in recent years. With the breakthrough of computer, robot control, and sensing technology, the development of unmanned vehicles has entered a stage of rapid development. It can reduce driver mistakes, bring convenience to the daily travel of humans, and it is widely used in the military and dangerous fields. However, the unmanned vehicle itself has strong nonlinearity, signal delay, and parameter uncertainty and its control is affected by external factors such as the change of road adhesion coefficient and lateral wind. Therefore, traditional control methods often face challenges in controlling the vehicle stably and accurately. The learning, adaptive, and approximate nonlinear mapping abilities of neural networks provide an effective way to solve the problems of vehicle model parameter uncertainty change, external disturbance, and vehicle adaptive control. Therefore, it is increasingly applied to the motion control of unmanned vehicles. The self-learning and adaptive ability of neural networks enable them to calculate the direct output control quantity according to the state deviation of the vehicle, which can be used as the controller of the unmanned vehicle. The ability of the neural networks to approach a nonlinear mapping makes it possible to approach the unknown dynamic parts of the vehicle, such as the uncertain parameters and external disturbances, which improves the accuracy and robustness of the controller design. The neural networks can remember previous information that can be used to calculate the current output. Thus, the neural networks can be used as the vehicle state observer to estimate the vehicle state parameters. The adaptive ability of the neural networks enables them to optimize the parameters of other control algorithms online. From these aspects, this paper summarized and classified the achievements and progress made by domestic and foreign scholars in applying neural networks to the motion control of unmanned vehicles in recent years, introduced the application situation, and evaluated the advantages and disadvantages. Finally, the main problems of neural networks in the motion control of unmanned vehicles were summarized and the possible development direction was prospected.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164