<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

單晶銅塑性變形的二維離散位錯動力學模擬研究

Investigation of the plastic deformation of single crystal copper using a two-dimensional discrete dislocation dynamics model

  • 摘要: 針對亞微米尺度晶體元器件在加工和服役中出現的反常力學行為和動態變形等問題,基于離散位錯動力學理論建立了單晶銅塑性變形過程的二維離散位錯動力學模型。該模型考慮外加載荷、位錯間相互力和自由表面鏡像力對位錯的作用機制,引入了截斷位錯速度準則。與微壓縮實驗對比驗證了模型的正確性,并且能夠描述力加載描述的位錯雪崩現象。應用該模型分析了不同加載方式和應變率下位錯演化及力學行為,結果表明:當外部約束為力加載和位移加載時,應力應變曲線分別呈現出臺階狀的應變突增和鋸齒狀的應力陡降,位錯雪崩效應的內在機制則分別歸結為位錯速度的隨機性和位錯源開動的間歇性;應變率在102~4×104 s?1范圍內,單晶銅屈服應力的應變率敏感性發生改變,位錯演化特征由單滑移轉變為多滑移面激活的均勻變形,位錯增殖逐漸代替位錯源激活作為流動應力的主導機制。

     

    Abstract: Microelectromechanical systems (MEMS) that feature components with the same geometrical size as that of an individual grain have been widely used in a variety of industries, including electronics, machinery, energy, transportation, aerospace, and architecture. Owing to the widespread engineering application of MEMS and nanoelectromechanical system devices, including sensors and actuators, submicron scale crystal materials exhibit mechanical behaviors different from those of macroscale materials, such as size effect, intermittent plastic flow, and strain rate effect, that have become significant topics in mechanics and materials research in recent years. Since dislocations are the carriers of plastic deformation, understanding the dislocation mechanism of submicron crystalline materials is crucial for designing and predicting microdevice reliability. To improve the understanding of abnormal mechanical behavior and dynamic deformation of submicron scale crystal components in processing and application, a two-dimensional discrete dislocation dynamics model of single crystal copper for plastic deformation was established based on the discrete dislocation dynamics theory. The effects of applied load, dislocation interactions, and image force by the free surface on dislocations were all considered in the numerical model, and the cutoff weighted dislocation velocity was also introduced. The model can be used to describe the “dislocation avalanche” effect under stress-controlled modes and interpret the dislocation evolution and mechanical behavior under different loading modes and strain rates, as demonstrated by microcompression experiments. When the external loading modes are force control and displacement control, the stress–strain curves show a step-like character under strain and a sharply serrated character under stress, respectively. The randomization of the dislocation velocity and intermittent activation of dislocation sources are the internal mechanisms of the dislocation avalanche effect. The strain rate sensitivity of the yield stress for single crystal copper changes in the strain rate range of 102–4 × 104 s?1. The evolution characteristics of the dislocations change from single slip plane to uniform deformations induced by multiple slip planes activation, and the dominant mechanism for the strain rate effect of yield stress is dislocation multiplication rather than dislocation source activation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164