<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于深度神經網絡的點擊率預測模型

Click-through rate prediction model based on a deep neural network

  • 摘要: 針對現有深度神經網絡點擊率預測模型在對用戶偏好建模時,難以有效且高效地處理用戶行為序列的問題,提出長短期興趣網絡(Long and short term interests network, LSTIN)模型,充分利用用戶歷史記錄上下文信息和順序信息,提升點擊率預測精準性和訓練效率。使用基于注意力機制的Transformer和激活單元結構完成用戶長、短期興趣建模,對用戶短期興趣進一步使用循環神經網絡(Recurrent neural network, RNN)、卷積神經網絡(Convolutional neural networks, CNN)進行處理,最后使用全連接神經網絡進行預測。在亞馬遜公開數據集上開展實驗,將提出的模型與基于分解機的神經網絡(DeepFM)、深度興趣網絡(Deep interest network, DIN)等點擊率預測模型對比,結果表明提出的模型實現了考慮上下文信息和順序信息的用戶歷史記錄建模,接受者操作特征曲線下面積(Area under curve, AUC)指標為85.831%,相比于基礎模型(BaseModel)提升1.154%,相比于DIN提升0.476%。且因區分用戶長、短期興趣,模型能夠在提升預測精準性的同時保障訓練效率。

     

    Abstract: The click-through rate (CTR) prediction task is to estimate the probability that a user will click an item according to the features of user, item, and contexts. At present, CTR prediction has become a common and indispensable task in the field of e-commerce. Higher accuracy of CTR prediction results conduces to present more accurate and personalized results for recommendation systems and search engines to increase users’ actual CTR of items and bring more economic benefits. More researchers used a deep neural network (DNN) to solve the CTR prediction problem under the background of big data technology in recent years. However, there are a few models that can process time series data and fully consider the context information of users’ history effectively and efficiently. CTR prediction models based on a DNN learn users’ interests from their history; however, most of the existing models regard user interest, ignoring the differences between the long-term and short-term interests. This paper proposes a CTR prediction model named Long- and Short-Term Interest Network (LSTIN) to fully use the context information and order information of user history records. This use will help improve the accuracy and training efficiency of the CTR prediction model. Based on the attention mechanism, the transformer and activation unit structure are used to model long-term and short-term user interests. The latter is processed using the recurrent and convolutional neural networks further. Eventually, a fully-connected neural network is applied for prediction. Different from DeepFM and Deep Interest Network (DIN) in experiments on an Amazon public dataset, LSTIN achieves modeling with context and order information of user history. The AUC of LSTIN is 85.831%, which is 1.154% higher than that of BaseModel and 0.476% higher than that of DIN. Besides, LSTIN achieves distinguishing the long-term and short-term interests of users, which improves the performance and maintains the training efficiency of the CTR prediction model.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164