<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

GO改性珊瑚砂水泥結石體氯離子阻滯機理研究

Chloride retention mechanism of coral sand cement stones modified by graphene oxide

  • 摘要: 珊瑚砂地基遠離大陸,在海洋環境下通過注漿或攪拌樁等工藝注入極少摻量氧化石墨烯(GO)的水泥漿液改善珊瑚砂地基,可以大幅提升珊瑚砂水泥結石體阻滯氯離子滲透性能。本文通過快速氯離子遷移試驗(RCM方法)、掃描電鏡(SEM)實驗和Image-Pro Plus圖像處理等,在對比分析河砂與珊瑚砂顆粒形態差異以及摻入GO前后微觀結構變化規律的基礎上,揭示了GO改性珊瑚砂水泥結石體阻滯氯離子滲透的作用機理。試驗結果表明:顆粒棱角度高、形狀不規則、多孔且含有內孔隙等原因是相同工藝條件下珊瑚砂水泥結石體阻滯氯離子滲透性遠低于河砂水泥結石體的主要原因;當摻入質量分數0.02%的GO后,28 d和56 d的珊瑚砂水泥結石體阻滯氯離子滲透性能指標提升程度最高(39.43%與48.93%),并與相同工藝條件下無添加GO的普通河砂水泥結石體指標相近;珊瑚砂水泥結石體阻滯氯離子滲透性能提升程度與GO摻量有關,兩者先呈正相關而后呈負相關,0.02%質量分數為本文最佳試驗摻入量;調控水泥水化產物生成規整有序的水化晶體形狀,改善界面過渡區的形貌,填充內部裂紋的空間,修復孔隙的形貌特征是摻入GO影響珊瑚砂水泥結石體抗氯離子滲透性的主要原因。

     

    Abstract: In the marine environment far away from the mainland, the coral sand foundation can be improved by injecting the cement grout with a very small amount of graphene oxide (GO) through grouting or mixing piles and other processes, which can greatly increase the stone body’s ability to block chloride ion penetration. Based on the comparative analysis of the difference in the particle morphology of river sand and coral sand and changes in hydration products and microstructure before and after GO incorporation, this study employed a rapid chloride ion migration test, scanning electron microscope experiment, and Image-Pro Plus image processing to reveal the mechanism of the modified coral sand cement stone body blocking permeation by chloride. The result reveals that high particle angles, irregular shapes, and porous and internal pores are the main reasons for the lower coral sand cement stone body than the river sand cement stone body in blocking chloride ion permeability under the same process conditions. After mixing 0.02% (mass fraction) GO, 28 d and 56 d coral sand cement stones have the highest degree of improvement in blocking chloride ion permeability (39.43% and 48.93%) and are similar to those of ordinary river sand cement stones without GO addition under the same process conditions. The coral sand cement stone body’s antichloride ion penetration performance improvement is related to the amount of GO. The two are first positively correlated and then negatively correlated. 0.02% is the best mix-up measure after the experiment in the assay. Regulating cement hydration products to form a regular and orderly hydrated crystal shape, improving the morphology of the interface transition zone, filling the space of internal cracks, and repairing the morphological characteristics of the pores are the main reasons that allow the incorporation of GO to affect the resistance of coral sand cement stones to chloride ion permeability.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164