<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于Pareto的電池容量衰退權衡優化控制策略

Pareto-based optimal control strategy for battery capacity decline

  • 摘要: 由于插電式混合動力汽車電池可以通過電網獲取比較廉價的電量,傳統的控制策略只考慮充分利用電池電量,但忽略了過度使用電池,會加快動力電池容量的衰退。因此,如何權衡充分利用電池電量與抑制電池容量衰退是新的研究重點。基于電池的半經驗衰退模型,引入電池利用程度因子,建立權衡電池容量衰退的能量管理策略。通過Pareto非劣目標域選取合適的權重因子,將多目標優化問題轉化為單目標問題,采用動態規劃算法獲得權重系數全局最優解,通過權衡不同權重下的油耗和電池容量衰退程度選擇最優權重系數。在燃油消耗相當的情況下,當權重系數為0.9時,可有效抑制電池壽命的衰減速度。最后,通過在線等效油耗最小策略仿真與在同一權重下的動態規劃解進行比較來驗證其有效性。

     

    Abstract: As environmental problems become increasingly severe, achieving qualitative breakthroughs in the energy consumption and emissions of traditional internal combustion engine vehicles is difficult. In contrast, new energy vehicles are environmentally friendly and have low fuel consumption, which is important for the future development of vehicles. A plug-in hybrid electric vehicle (PHEV) is widely regarded as the most promising alternative solution for improving energy efficiency and reducing emissions. The optimization of the energy management strategy (EMS) mainly focuses on reducing fuel consumption and improving the economy. However, the durability of the power battery also needs attention, as the lack of life remains a major obstacle to the large-scale commercialization of PHEVs. Because PHEV batteries can obtain relatively cheap power through the grid, the traditional control strategy only considers the full use of the battery power but ignores its excessive use, which will accelerate the decline of the power battery capacity. Therefore, determining how to make full use of the battery power and control the decline of the battery capacity is a new research focus. Based on the semiempirical decay model of the battery, the energy management strategy of balancing the degradation of the battery capacity was established by introducing the battery utilization degree factor. The multiobjective optimization problem was transformed into a single-objective problem by selecting the appropriate weight factor through the Pareto noninferior target domain. A dynamic programming algorithm was used to obtain the global optimal solution of the weight coefficient. The optimal weight coefficient was selected by weighing the fuel consumption and battery capacity decline degree under different weights. In the case of equivalent fuel consumption, the decay rate of battery life can be effectively inhibited when the weight coefficient is 0.9. Finally, the validity of the proposed solution is verified by comparing the online equivalent consumption minimization strategy (ECMS) simulation with the dynamic programming solution under the same weight.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164