<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

霧輔助物聯網中公平節能的計算遷移

Fairness and energy co-aware computation offloading for fog-assisted IoT

  • 摘要: 為了構建綠色且長生命周期的物聯網,本文提出了一種霧輔助的公平節能物聯網計算遷移方案。首先,基于霧節點計算能力、帶寬資源以及融合霧節點能耗公平性的遷移決策的聯合考量,構建了一個最小化所有任務完成總能耗的優化問題。其次,提出了基于動量梯度和坐標協同下降的公平性能耗最小化算法用于解決上述混合整數非線性規劃問題。該算法基于霧節點的歷史平均能耗、距離、計算能力以及剩余能量值設計了公平性指標以獲得對于霧節點能耗公平性最優的遷移決策;通過提出的動量梯度與坐標協同下降法,聯合優化霧節點分配給各個任務的計算及帶寬資源占比,達到最小化任務處理總能耗。最后,仿真結果表明本文方案能夠取得較快的收斂速度,且與隨機選擇和貪婪任務遷移方案兩種基準方案相比,本文方案的總能耗最低,霧節點的能耗公平性最高,且網絡壽命分別平均提高了23.6%和31.2%。進一步地,該方案在不同霧節點數量以及不同任務大小的環境下仍然能夠保持性能優勢,體現了方案魯棒性高的特點。

     

    Abstract: As an extension of the cloud computing paradigm, fog computing has attracted wide attention due to its advantages of low energy consumption, short time delay, and high bandwidth saving. Meanwhile, the fog computing-based computation offloading mechanism provides strong support for alleviating the pressure of data processing, realizing low delay service, and prolonging the network lifetime. To construct a green and long lifetime Internet of Things (IoT), this paper proposes a fairness and energy co-aware computation offloading scheme for fog-assisted IoT. Based on the joint optimization consideration of the fog node’s computing capacity, bandwidth resource, and offloading decision with energy consumption fairness, an optimization problem is first formulated to minimize the total energy consumption of all computation tasks. Second, a momentum gradient and coordinate collaboration descent-based fair energy minimization algorithm are proposed to solve the above mixed integer nonlinear programming problem. In this algorithm, based on the historical average energy consumption, distance, computing capacity, and residual energy of the fog node, a fair index is designed to obtain the offloading decision with the optimal energy consumption fairness. Minimization of the total energy consumption for processing all tasks can be achieved by jointly optimizing the occupation ratios of computing and bandwidth resources with the developed momentum gradient and coordinate collaboration descent method. Finally, simulation results show that the proposed scheme can achieve a faster convergence speed. Meanwhile, the total energy consumption of this scheme is the lowest compared to the random selection and greedy task offloading (GTO) schemes, the energy consumption fairness of the fog node is the highest, and the network lifetime is enhanced by 23.6% and 31.2% on average, respectively. Furthermore, this scheme can still maintain its performance advantage under different numbers of fog nodes and different task sizes, indicating the high robustness of the proposed scheme.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164