<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

霧輔助物聯網中公平節能的計算遷移

陳思光 尤子慧

陳思光, 尤子慧. 霧輔助物聯網中公平節能的計算遷移[J]. 工程科學學報, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
引用本文: 陳思光, 尤子慧. 霧輔助物聯網中公平節能的計算遷移[J]. 工程科學學報, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
CHEN Si-guang, YOU Zi-hui. Fairness and energy co-aware computation offloading for fog-assisted IoT[J]. Chinese Journal of Engineering, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002
Citation: CHEN Si-guang, YOU Zi-hui. Fairness and energy co-aware computation offloading for fog-assisted IoT[J]. Chinese Journal of Engineering, 2022, 44(11): 1926-1934. doi: 10.13374/j.issn2095-9389.2021.02.19.002

霧輔助物聯網中公平節能的計算遷移

doi: 10.13374/j.issn2095-9389.2021.02.19.002
基金項目: 國家自然科學基金資助項目(61971235, 61771258);江蘇省“333高層次人才培養工程”資助項目;南京郵電大學‘1311’人才計劃資助項目;中國博士后科學基金(面上一等)資助項目(2018M630590);網絡與信息安全安徽省重點實驗室開放課題資助項目(AHNIS2020001);江蘇省博士后科研資助計劃資助項目( 2021K501C);賽爾網絡下一代互聯網技術創新資助項目( NGII20190702)
詳細信息
    通訊作者:

    E-mail: sgchen@njupt.edu.cn

  • 中圖分類號: TP393.0

Fairness and energy co-aware computation offloading for fog-assisted IoT

More Information
  • 摘要: 為了構建綠色且長生命周期的物聯網,本文提出了一種霧輔助的公平節能物聯網計算遷移方案。首先,基于霧節點計算能力、帶寬資源以及融合霧節點能耗公平性的遷移決策的聯合考量,構建了一個最小化所有任務完成總能耗的優化問題。其次,提出了基于動量梯度和坐標協同下降的公平性能耗最小化算法用于解決上述混合整數非線性規劃問題。該算法基于霧節點的歷史平均能耗、距離、計算能力以及剩余能量值設計了公平性指標以獲得對于霧節點能耗公平性最優的遷移決策;通過提出的動量梯度與坐標協同下降法,聯合優化霧節點分配給各個任務的計算及帶寬資源占比,達到最小化任務處理總能耗。最后,仿真結果表明本文方案能夠取得較快的收斂速度,且與隨機選擇和貪婪任務遷移方案兩種基準方案相比,本文方案的總能耗最低,霧節點的能耗公平性最高,且網絡壽命分別平均提高了23.6%和31.2%。進一步地,該方案在不同霧節點數量以及不同任務大小的環境下仍然能夠保持性能優勢,體現了方案魯棒性高的特點。

     

  • 圖  1  網絡模型

    Figure  1.  Network model

    圖  2  動量梯度下降法和傳統梯度下降法的總能耗對比

    Figure  2.  Comparison of the total energy consumption between the momentum gradient descent and gradient descent

    圖  3  Jain’s公平指數三種方案對比

    Figure  3.  Comparison of the Jain’s fairness index for the three different schemes

    圖  4  總能耗的三種方案對比

    Figure  4.  Comparison of the total energy consumption for the three different schemes

    圖  5  霧節點總歷史平均能耗的三種方案對比

    Figure  5.  Comparison of the total historical average energy consumption for the three different schemes

    圖  6  總能耗關于平均距離以及平均任務大小的對比

    Figure  6.  Comparison of the total energy consumption versus the average distance and average task size

    圖  7  Jain’s公平指數關于平均距離以及霧節點個數的對比

    Figure  7.  Comparison of the Jain’s fairness index versus the average distance and number of fog nodes

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Uddin H, Gibson M, Safdar G A, et al. IoT for 5G/B5G applications in smart homes, smart cities, wearables and connected cars // 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Limassol, 2019: 1
    [2] Sun J, Yao X M, Wang S P, et al. Blockchain-based secure storage and access scheme for electronic medical records in IPFS. IEEE Access, 2020, 8: 59389 doi: 10.1109/ACCESS.2020.2982964
    [3] Chen S G, Zhang S J, Zheng X Y, et al. Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. J Netw Comput Appl, 2019, 129: 37 doi: 10.1016/j.jnca.2019.01.002
    [4] Lyu L J, Nandakumar K, Rubinstein B, et al. PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans Ind Inform, 2018, 14(8): 3733 doi: 10.1109/TII.2018.2803782
    [5] Chen S G, Yang L, Zhao C X, et al. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 2022, 8: 159 doi: 10.1016/j.eng.2020.06.018
    [6] Chen S G, Wang Z H, Zhang H J, et al. Fog-based optimized kronecker-supported compression design for industrial IoT. IEEE Trans Sustain Comput, 2020, 5(1): 95 doi: 10.1109/TSUSC.2019.2906729
    [7] Essalhi S E, El Fenni M R, Chafnaji H. Smart energy management for fog-enabled IoT network // Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications. Rabat, 2020: 1
    [8] Jia M, Yin Z S, Li D B, et al. Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Int Things J, 2019, 6(3): 4252 doi: 10.1109/JIOT.2018.2875743
    [9] Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the internet of things // Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Helsinki, 2012: 13
    [10] Dastjerdi A V, Buyya R. Fog computing: Helping the Internet of Things realize its potential. Computer, 2016, 49(8): 112 doi: 10.1109/MC.2016.245
    [11] Andreev S, Petrov V, Huang K B, et al. Dense moving fog for intelligent IoT: Key challenges and opportunities. IEEE Commun Mag, 2019, 57(5): 34 doi: 10.1109/MCOM.2019.1800226
    [12] Wang Q, Chen S G. Latency-minimum offloading decision and resource allocation for fog-enabled Internet of Things networks. Trans Emerging Tel Tech, 2020, 31(12): e3880
    [13] Guo K, Sheng M, Quek T Q S, et al. Task offloading and scheduling in fog RAN: A parallel communication and computation perspective. IEEE Wirel Commun Lett, 2020, 9(2): 215 doi: 10.1109/LWC.2019.2948860
    [14] Chen S G, Zheng Y M, Lu W F, et al. Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans Green Commun Netw, 2020, 4(2): 566 doi: 10.1109/TGCN.2019.2960767
    [15] Wu Q, Liu H X, Wang R H, et al. Delay-sensitive task offloading in the 802.11p-based vehicular fog computing systems. IEEE Int Things J, 2019, 7(1): 773
    [16] Chen S G, You Z H, Ruan X K. Privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks. IEEE Access, 2020, 8: 72424 doi: 10.1109/ACCESS.2020.2987749
    [17] Mukherjee M, Kumar V, Kumar S, et al. Computation offloading strategy in heterogeneous fog computing with energy and delay constraints // 2020. IEEE International Conference on Communications (ICC), Dublin, 2020: 1
    [18] He X Y, Chen Y, Chai K K. Delay-aware energy efficient computation offloading for energy harvesting enabled fog radio access networks // 2018. IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018: 1
    [19] Zhu X, Chen S G, Chen S L, et al. Energy and delay co-aware computation offloading with deep learning in fog computing networks // 2019. IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, 2019: 1
    [20] Xu M, Wang W, Zhang M, et al. Joint optimization of energy consumption and time delay in energy-constrained fog computing networks // 2019. IEEE Global Communications Conference (GLOBECOM), Waikoloa, 2019: 1
    [21] Orive A, Agirre A, Bilbao J, et al. Passive network state monitoring for dynamic resource management in industry 4.0 fog architectures // 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). Munich, 2018: 1414
    [22] Zhang G W, Shen F, Yang Y, et al. Fair task offloading among fog nodes in fog computing networks // 2018. IEEE International Conference on Communications (ICC), Kansas, 2018: 1
    [23] Zhang G W, Shen F, Liu Z N, et al. FEMTO: fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Int Things J, 2019, 6(3): 4388 doi: 10.1109/JIOT.2018.2887229
    [24] Wu C Y, Xu Y Y. Greedy coordinate descent method on non-negative quadratic programming // 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). Hangzhou, 2020: 1
    [25] Zhang L Y, Zhang P C, Yang J, et al. Aperture shape generation based on gradient descent with momentum. IEEE Access, 2019, 7: 157623 doi: 10.1109/ACCESS.2019.2949871
  • 加載中
圖(7)
計量
  • 文章訪問數:  483
  • HTML全文瀏覽量:  199
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-02-19
  • 網絡出版日期:  2022-06-21
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回