[1] |
Uddin H, Gibson M, Safdar G A, et al. IoT for 5G/B5G applications in smart homes, smart cities, wearables and connected cars // 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Limassol, 2019: 1
|
[2] |
Sun J, Yao X M, Wang S P, et al. Blockchain-based secure storage and access scheme for electronic medical records in IPFS. IEEE Access, 2020, 8: 59389 doi: 10.1109/ACCESS.2020.2982964
|
[3] |
Chen S G, Zhang S J, Zheng X Y, et al. Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. J Netw Comput Appl, 2019, 129: 37 doi: 10.1016/j.jnca.2019.01.002
|
[4] |
Lyu L J, Nandakumar K, Rubinstein B, et al. PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans Ind Inform, 2018, 14(8): 3733 doi: 10.1109/TII.2018.2803782
|
[5] |
Chen S G, Yang L, Zhao C X, et al. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 2022, 8: 159 doi: 10.1016/j.eng.2020.06.018
|
[6] |
Chen S G, Wang Z H, Zhang H J, et al. Fog-based optimized kronecker-supported compression design for industrial IoT. IEEE Trans Sustain Comput, 2020, 5(1): 95 doi: 10.1109/TSUSC.2019.2906729
|
[7] |
Essalhi S E, El Fenni M R, Chafnaji H. Smart energy management for fog-enabled IoT network // Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications. Rabat, 2020: 1
|
[8] |
Jia M, Yin Z S, Li D B, et al. Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Int Things J, 2019, 6(3): 4252 doi: 10.1109/JIOT.2018.2875743
|
[9] |
Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the internet of things // Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Helsinki, 2012: 13
|
[10] |
Dastjerdi A V, Buyya R. Fog computing: Helping the Internet of Things realize its potential. Computer, 2016, 49(8): 112 doi: 10.1109/MC.2016.245
|
[11] |
Andreev S, Petrov V, Huang K B, et al. Dense moving fog for intelligent IoT: Key challenges and opportunities. IEEE Commun Mag, 2019, 57(5): 34 doi: 10.1109/MCOM.2019.1800226
|
[12] |
Wang Q, Chen S G. Latency-minimum offloading decision and resource allocation for fog-enabled Internet of Things networks. Trans Emerging Tel Tech, 2020, 31(12): e3880
|
[13] |
Guo K, Sheng M, Quek T Q S, et al. Task offloading and scheduling in fog RAN: A parallel communication and computation perspective. IEEE Wirel Commun Lett, 2020, 9(2): 215 doi: 10.1109/LWC.2019.2948860
|
[14] |
Chen S G, Zheng Y M, Lu W F, et al. Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans Green Commun Netw, 2020, 4(2): 566 doi: 10.1109/TGCN.2019.2960767
|
[15] |
Wu Q, Liu H X, Wang R H, et al. Delay-sensitive task offloading in the 802.11p-based vehicular fog computing systems. IEEE Int Things J, 2019, 7(1): 773
|
[16] |
Chen S G, You Z H, Ruan X K. Privacy and energy co-aware data aggregation computation offloading for fog-assisted IoT networks. IEEE Access, 2020, 8: 72424 doi: 10.1109/ACCESS.2020.2987749
|
[17] |
Mukherjee M, Kumar V, Kumar S, et al. Computation offloading strategy in heterogeneous fog computing with energy and delay constraints // 2020. IEEE International Conference on Communications (ICC), Dublin, 2020: 1
|
[18] |
He X Y, Chen Y, Chai K K. Delay-aware energy efficient computation offloading for energy harvesting enabled fog radio access networks // 2018. IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018: 1
|
[19] |
Zhu X, Chen S G, Chen S L, et al. Energy and delay co-aware computation offloading with deep learning in fog computing networks // 2019. IEEE 38th International Performance Computing and Communications Conference (IPCCC), London, 2019: 1
|
[20] |
Xu M, Wang W, Zhang M, et al. Joint optimization of energy consumption and time delay in energy-constrained fog computing networks // 2019. IEEE Global Communications Conference (GLOBECOM), Waikoloa, 2019: 1
|
[21] |
Orive A, Agirre A, Bilbao J, et al. Passive network state monitoring for dynamic resource management in industry 4.0 fog architectures // 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). Munich, 2018: 1414
|
[22] |
Zhang G W, Shen F, Yang Y, et al. Fair task offloading among fog nodes in fog computing networks // 2018. IEEE International Conference on Communications (ICC), Kansas, 2018: 1
|
[23] |
Zhang G W, Shen F, Liu Z N, et al. FEMTO: fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Int Things J, 2019, 6(3): 4388 doi: 10.1109/JIOT.2018.2887229
|
[24] |
Wu C Y, Xu Y Y. Greedy coordinate descent method on non-negative quadratic programming // 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). Hangzhou, 2020: 1
|
[25] |
Zhang L Y, Zhang P C, Yang J, et al. Aperture shape generation based on gradient descent with momentum. IEEE Access, 2019, 7: 157623 doi: 10.1109/ACCESS.2019.2949871
|