<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

切縫藥包爆破定向裂紋與張開節理相互作用的實驗研究

Experimental study of the interaction of directional crack and open joint in slit charge blasting

  • 摘要: 為了探究切縫藥包爆破定向裂紋與張開節理的相互作用過程,采用動態焦散線方法,結合高速攝影技術,開展了爆破模型實驗研究。研究結果表明,張開節理對切縫藥包爆破定向裂紋的擴展有阻滯作用,定向裂紋不會穿過張開節理繼續擴展,而是在經過與節理相互作用后在節理端部產生兩條翼裂紋。當定向裂紋垂直入射時,節理兩端的受力狀態基本相同,兩條翼裂紋的起裂和擴展行為基本一致,兩條翼裂紋的分布狀態基本對稱。張開節理的幾何特征對翼裂紋起裂時的動態應力強度因子有顯著影響,一定程度上決定了翼裂紋起裂的難易程度。當定向裂紋傾斜入射時,節理兩端的受力狀態存在差異,靠近定向裂紋入射點的一端能夠獲得更多的起裂能量,從而優先起裂和擴展,并形成更長的翼裂紋。

     

    Abstract: To explore the interaction between directional crack and open joint in slit charge blasting, a dynamic caustics method and high-speed photography technology were used to carry out the blasting model experiment. In the model experiment, the polymethyl methacrylate (PMMA) was used as the specimen material, the lead azide (Pb(N3)2) was used as the explosive, and a 3D printed resin material was used as the slit tube. Additionally, varying shapes of the open joint were prefabricated in the specimen. The failure mode of the specimen was described in detail, the initiation and propagation process of the wing crack at two ends of the joint was also analyzed. Research results show that the open joint has a retarding effect on the propagation of the directional crack in slit charge blasting. The directional crack will not continue to propagate through the open joint, but it will produce two wing cracks at the ends of the joint after interacting with the joint. When the directional crack is incident perpendicular to the open joint, the stress state at both the ends of the joint and the initiation and propagation behavior of the two wing cracks are the same, and the distribution state of the two wing cracks is symmetric. The geometric characteristics of the open joint have a significant impact on the dynamic stress intensity factor when the wing crack is initiated. Moreover, it determines the difficulty of the wing crack initiation to some extent. When the directional crack is incident obliquely, the stress state of the two ends of the joint is different. The end, which is close to the incident point of the directional crack, exhibits more crack initiation energy so that the crack is initiated and propagated preferentially and a longer wing crack is formed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164