<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于群體智能優化的MKL-SVM算法及肺結節識別

MKL-SVM algorithm for pulmonary nodule recognition based on swarm intelligence optimization

  • 摘要: 針對單核學習支持向量機無法兼顧學習能力與泛化能力以及多核函數參數尋優問題,提出了一種基于群體智能優化的多核學習支持向量機算法。首先,研究了五種單核函數對支持向量機分類性能的影響,進一步提出具有全局性質的多項式核和局部性質的拉普拉斯核凸組合形式的多核學習支持向量機算法;其次,為增加粒子多樣性及快速尋優,將粒子群優化算法引入了遺傳算法中的雜交操作,并用此改進的群體智能優化算法對多核學習支持向量機進行參數尋優。最后,分別采用深度特征與手工特征作為識別算法的輸入,研究表明采用深度特征優于手工特征。故本文采用深度特征作為多核學習支持向量機的輸入,以交叉遺傳與粒子群混合智能優化算法作為其尋優方式。實驗選取合作醫院數據集對所提算法進行訓練并初步測試,進一步為了驗證所提算法的泛化能力,選取公開數據集LUNA16進行測試。實驗結果表明,本文算法易于跳出局部最優解,提升了算法的學習能力與泛化能力,具有較優的分類性能。

     

    Abstract: To solve the problem that a single kernel learning support vector machine (SVM) cannot consider the learning and generalization abilities and parameter optimization of the multiple kernel function, a multiple kernel learning support vector machine (MKL-SVM) algorithm based on swarm intelligence optimization was proposed. First, the impact of five single kernel functions on the classification indexes of SVM was discussed. These kernel functions include two global kernel functions — the polynomial and sigmoid kernel functions — and three local kernel functions—the radial basis function, exponential kernel function, and Laplacian kernel function. Next, an MKL-SVM algorithm with a convex combination of a polynomial kernel having global properties and a Laplacian kernel having local properties was proposed. Then, to improve particle diversity to avoid falling into local optimal solutions during the iteration, and to reduce the model’s training time, the crossover operation in the genetic algorithm was introduced into the particle swarm optimization (PSO) algorithm. This improved swarm intelligence optimization was used to optimize the parameters of the MKL-SVM. Finally, deep learning features based on the classical model VGG16 and handcrafted features according to doctors’ suggestions were used as inputs for the recognition algorithm. In this algorithm, transfer learning was used to extract deep learning features and principal component analysis was used to reduce computational complexity through dimensionality reduction. The results show that using deep learning features is better than handcrafted features. Therefore, this paper adopts the deep learning features as input for the MKL-SVM algorithm and the hybrid swarm intelligent optimization algorithm of crossover genetic and the PSO algorithm as the optimization method. To verify the generalization ability of the proposed algorithm, the public dataset LUNA16 was selected for testing. The experimental results show that the proposed algorithm is easy to jump out of the local optimal solution, improves the learning ability and generalization ability of the algorithm, and has a better classification performance.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164