<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于數據融合的智能醫療輔助診斷方法

Intelligent medical assistant diagnosis method based on data fusion

  • 摘要: 醫生診斷需要結合臨床癥狀、影像檢查等各種數據,基于此,提出了一種可以進行數據融合的醫療輔助診斷方法。將患者的影像信息(如CT圖像)和數值數據(如臨床診斷信息)相結合,利用結合的信息自動預測患者的病情,進而提出了基于深度學習的醫療輔助診斷模型。模型以卷積神經網絡為基礎進行搭建,圖像和數值數據作為輸入,輸出病人的患病情況。該醫療輔助診斷方法能夠利用更加全面的信息,有助于提高自動診斷準確率、降低診斷誤差;另外,僅使用提出的醫療輔助診斷模型就可以一次性處理多種類型的數據,能夠在一定程度上節省診斷時間。在兩個數據集上驗證了所提出方法的有效性,實驗結果表明,該方法是有效的,它可以提高輔助診斷的準確性。

     

    Abstract: In the field of medicine, in order to diagnose a patient’s condition more efficiently and conveniently, image classification has been widely leveraged. It is well established that when doctors diagnose a patient’s condition, they not only observe the patient’s image information (such as CT image) but also make final decisions incorporating the patient’s clinical diagnostic information. However, current medical image classification only puts the image into a convolution neural network to obtain the diagnostic result and does not use the clinical diagnosis information. In intelligent auxiliary diagnosis, it is necessary to combine clinical symptoms with other imaging data for comprehensive diagnosis. This paper presented a new method of assistant diagnosis for the medical field. This method combined information from patients’ imaging with numerical data (such as clinical diagnosis information) and used the combined information to automatically predict the patient’s condition. Based on this method, a medical assistant diagnosis model based on deep learning was proposed. The model takes images and numerical data as input and outputs the patient’s condition. Thus, this method is comprehensive and helps improve the accuracy of automatic diagnosis and reduce diagnostic error. Moreover, the proposed model can simultaneously process multiple types of data, thus saving diagnosis time. The effectiveness of the proposed method was verified in two groups of experiments designed in this paper. The first group of experiments shows that if the unrelated data are fused for classification, the proposed method cannot enhance the classification ability of the model, although it is able to predict multiple diseases at one time. The second group of experiments show that the proposed method could significantly improve classification results if the interrelated data are fused.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164