<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于改進YOLACT實例分割網絡的人耳關鍵生理曲線提取

Physiological curve extraction of the human ear based on the improved YOLACT

  • 摘要: 在人耳形狀聚類、3D人耳建模、個人定制耳機等相關工作中,獲取人耳的一些關鍵生理曲線和關鍵點的準確位置非常重要。傳統的邊緣提取方法對光照和姿勢變化非常敏感。本文提出了一種基于ResNeSt和篩選模板策略的改進YOLACT實例分割網絡,分別從定位和分割兩方面對原始YOLACT算法進行改進,通過標注人耳數據集,訓練改進的YOLACT模型,并在預測階段使用改進的篩選模板策略,可以準確地分割人耳的不同區域并提取關鍵的生理曲線。相較于其他方法,本文方法在測試圖像集上顯示出更好的分割精度,且對人耳姿態變化時具有一定的魯棒性。

     

    Abstract: In related work, such as human ear shape clustering, three-dimensional human ear modeling, and personal customized headphones, the key physiological curves of the human ear and the accurate positions of key points need to be determined. Moreover, as an important biological feature, the morphological analysis and classification of the human ear are of considerable value for medical work related to the human ear. However, because of the complex morphological structure of the human ear, the generation of a general standard for the morphological structure of the human ear is difficult. This study divided the morphological structure of the human ear into three regions, namely, helix, antihelix, and concha, for instance segmentation and key physiological curve extraction. Traditional edge extraction methods are sensitive to illumination and posture variations. Moreover, the color distribution of one human ear image is relatively consistent. Thus, the transition among the three regions may not be obvious, which will cause poor adaptability for traditional edge extraction methods when extracting the key physiological curves of the human ear. To address this problem, this study proposed an improved YOLACT(You Only Look At CoefficienTs) instance segmentation model based on the ResNeSt backbone and the “screening mask” strategy, which improves the original YOLACT model from two aspects, namely, localization and segmentation. Our ResNeSt-based YOLACT model was trained with labeled ear images from the USTB-Helloear image set. In the prediction stage, the original cropping mask strategy was discarded and replaced with our proposed screening mask strategy to ensure the integrity of the edges of the segmentation area. These improvements enhance the accuracy of curve detection and extraction and can accurately segment different regions of the human ear and extract key physiological curves. Compared with other methods, our proposed method shows better segmentation accuracy on the test image set and is more robust to posture variations of the human ear.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164