<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于改進降噪自編碼器半監督學習模型的熱軋帶鋼水梁印識別算法

Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder

  • 摘要: 針對水梁印識別困難且工作量大問題,提出一種基于改進降噪自編碼器半監督學習模型的熱軋帶鋼水梁印識別算法。該算法在降噪自編碼器(Denoising auto-encoder, DAE)的基礎上對編碼層的每一層添加隨機噪聲,在隱藏層后添加分類層,并對數據添加偽標簽,在解碼的同時進行分類訓練,使得DAE具有半監督學習能力。通過提取熱軋帶鋼粗軋出口溫度數據中的溫差特征,用相應特征對模型進行訓練。實驗結果表明,算法能夠準確識別出帶鋼的水梁印,在模型精確度上,與主流分類識別模型對比,提出的模型在帶標簽樣本數量較小時,分類精度相比其他模型高5.0%~10.0%;在帶標簽樣本數量較大時,提出的模型分類精度達到93.8%,現場能夠根據模型的識別結果提高生產效率。

     

    Abstract: The water beam mark is a common problem in slab heating, which causes quality defects on strip steel. In hot strip rolling, the heating quality of the slab considerably influences the rolling stability and quality of the finished strip. The water beam mark caused by the heating process and equipment is a common defect in the slab heating. A slab water beam imprint has a great influence on the control precision of the rolling force and thickness of the finished strip. Presently, recognizing the water beam mark is difficult and the workload in the industry is heavy. To solve these problems, this study proposed a recognition algorithm of a hot-rolled strip steel water beam mark based on a semisupervised learning model of an improved denoising autoencoder (DAE). Based on the DAE, random noise was added to each layer of the coding layer, a classification layer was added after a hidden layer, and fake labels were added to the training data. Decoding and classification training are conducted simultaneously. These methods result in the model becoming semisupervised. In this study, we extract the temperature difference of the strip temperature data at the outlet of the roughing mill and use it to train the model. Experimental results showed that the algorithm can accurately recognize the water beam mark of strip steel. The classification accuracy of the proposed model is 5.0%–10.0% higher than other mainstream models when the number of tag proportions is small. When the number of tag proportions is large, the accuracy of the proposed model reaches up to 93.8%. According to the result, the production efficiency can be improved using this model.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164