<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于文獻計量解析VOCs催化氧化的發展趨勢

Bibliometric analysis of the development tendency of VOCs catalytic oxidation

  • 摘要: 以VOCs的催化氧化為主題,利用Web of Science數據庫對4654篇論文進行了數據處理,并通過文獻計量學的方法分析了該主題的發展趨勢與研究現狀。結果表明,近25年期間,VOCs催化氧化相關課題的研究底蘊豐富,發展前景良好,年度發文數量呈指數型增長趨勢。中國是世界上發表VOCs催化氧化為主題的論文最多的國家,占研究總量的34%;研究最深的機構和期刊分別是中國科學院大學(6.66%)和Applied Catalysis B-Environmental(11.68%);Chemistry和Engineering是最受歡迎的科目。此外,對近年來的研究熱詞分析表明,應用于VOCs催化氧化的催化劑中,最熱門的元素是Mn,實驗中最常見的VOCs類底物是甲苯。總結了常見的催化劑物質和VOCs底物,這反映了目前的主要研究方向,也為今后的研究提供了指導。

     

    Abstract: Volatile organic compounds (VOCs) have a wide variety and large emissions. VOCs are precursors of ozone and photochemical smog. Some VOCs, such as benzene, toluene, and xylene (BTX), are carcinogenic, teratogenetic, and mutagenic, which can greatly harm the skin, viscera, and nervous system. Researchers estimated in 2013 that 5.5 million people died from air pollution worldwide, thus becoming a serious threat to our daily lives. In the context of massive VOC emissions, the dramatic decline of the regional air quality, and the frequent occurrence of environmental problems, more attention has been paid to the control of VOCs. Governments have formulated a series of regulations and policies to limit the emissions of man-made VOCs. Under the guidance of strict policies, scholars have conducted extensive research on the governance technology of VOCs. Taking the catalytic oxidation of VOCs as the topic in this study, 4654 papers were processed by the Web of Science database, and the development tendency and research status of the topic were analyzed by way of bibliometrics. Results show that the VOC catalytic oxidation has abundant research depth in the past 25 years. The research prospect is found to be admirable and the number of published papers shows an exponential growth trend. China is the largest contributor of publications in the world, accounting for 34% of the total research. The biggest producing institution and journal are the University of Chinese Academy of Sciences (6.66%) and the Applied Catalysis B-Environmental (11.68%), respectively. Chemistry and Engineering are the most popular subjects. In addition, the hot word analysis in recent years shows that the most popular element in the catalyst is Mn, while toluene is the most common substrate of VOCs in the experiment. At the same time, this paper summarizes common catalyst substances and VOC substrates, which consequently reflects the current main research direction and provides guidance for future research.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164