<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于協調變量的多機協同打擊制導方法與試驗驗證

Coordinated variable-based guidance method and experimental verification for multi-UAVs

  • 摘要: 根據多無人機協同打擊的作戰特點和要求,提出了一種通用性集群時空協同打擊制導控制方案。該方案分析了比例導引律(Proportional navigation law, PN)在滿足特定協調變量一致時具有下彈道唯一的特性,以此為基礎,通過選取協調變量,將制導段分為協調段和末制導段。協調段的航跡控制采用改進Dubins方法,實現了協調變量的時空同步收斂;末制導段將三維空間制導解耦為縱向平面與側向平面的制導,基于同系數比例導引實現集群攻擊時間一致。分段航跡控制實現了集群在考慮目標防御射界約束下的時空協同。數值仿真和實際飛行試驗結果表明,該方案具有實時的在線規劃能力,能夠實現大規模集群時空協同下的全向飽和攻擊,打擊時間精度和空間精度較高。

     

    Abstract: With the gradual establishment of regional cooperative air defense systems by the world’s military powers, the success rate of a single-aircraft penetration operation is greatly reduced, and the concept of many-to-one cooperative operation has been widely valued. As a new type of lethal aerial weapon, suicide unmanned aerial vehicles (UAVs) have played an important role in many local wars recently. Compared with traditional missiles, suicide UAVs can hover in a combat area for a long time, waiting for potential targets. Moreover, a suicide UAV cannot be easily detected via an early warning system and can approach targets covertly. Further, the manufacturing cost of a suicide UAV is low, and it can form a large-scale swarm for a surprise attack. Therefore, in the foreseeable future, a multi-UAV cooperative attack is likely to subvert existing combat styles. According to the operational characteristics and requirements of multi-UAV cooperative attacks, a general guidance scheme for the cooperative attack of multi-UAVs is proposed. Based on the theory that proportional navigation law has trajectory uniqueness under specific variable constraints, the guidance phase is divided into coordination and terminal phases by selecting coordinated variables. The improved Dubins method is used in the track control of the coordination phase to realize the space–time synchronous convergence of coordination variables. The 3D space guidance is decoupled into longitudinal- and lateral-plane guidance in the terminal phase, and the impact time of the swarm is consistent based on the proportional guidance with the same coefficient. A track segment control realizes the space–time cooperation of the swarm considering the target defense range constraint. Numerical simulation and actual flight test results show that the scheme has real-time online planning ability, can realize an omnidirectional saturation attack under the space–time cooperation of a large-scale UAV swarm, and has high impact time and space precision.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164