<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

退火時間對Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V鈦合金組織及力學性能的影響

Effect of annealing time on microstructure and mechanical properties of Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V titanium alloy

  • 摘要: 針對近α型Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V新型鈦合金,在退火溫度740 ℃的基礎上,研究了退火時間對其組織與力學性能的影響。結果表明:經過3次真空自耗電弧爐熔煉,三火熱軋后得到的板材組織由初生α相基體及β轉變組織組成的部分再結晶組織和加工態組織等組成。隨著退火時間的增加,退火板材的顯微組織均以初生α相為主,且α相所占的比例從81.73%逐漸增加至85.61%,組織中長條狀α相逐漸破碎球化,等軸α相開始均勻化、粗化。隨著退火時間的增加,退火板材的延伸率逐漸增加,抗拉強度先降低再增加然后又降低,屈服強度先增加后降低,顯微硬度先增加后降低。退火時間為1 h時,板材的斷口由滑移帶、漣波、小等軸韌窩組成,斷裂方式為韌性斷裂,退火時間大于等于2 h時,板材的斷口完全由等軸韌窩組成,斷裂方式為韌性斷裂。最佳退火工藝為740 ℃退火2 h,此時板材的抗拉強度、屈服強度、延伸率和顯微硬度分別為:984 MPa、941 MPa、15.27%、HV 347.67。研究結果對高強耐蝕鈦合金退火工藝的制定有指導作用,為解決鈦合金在實際生產中遇到的問題提供了科學依據。

     

    Abstract: The effect of annealing time on the microstructure and mechanical properties of Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V new titanium alloys were studied based on the optimum annealing temperature of 740 ℃. Results show that after smelting thrice by vacuum consumable arc furnace and thrice hot rolling processes, the microstructure of the sheet is the partial recrystallization structure composed of the primary α phase, structure of β transformation, and the processing status structure. With increased annealing time, the microstructure of the annealed sheet is mainly composed of the primary α phase, with the proportion of the α phase being gradually increased from 81.73% to 85.61%. The strip-shaped α phase in the microstructure is broken and spheroidized gradually, and an equiaxial α phase begins to be homogenized and coarsened. With the increase of annealing time, the elongation of annealed sheets increases greatly; the tensile strength initially decreases, increases, and then decreases again; and the yield strength and the microhardness first increase and then decrease. When the annealing time is 1 h, the fracture of the sheet has a ductile fracture mode and is composed of slip bands, ripple appearance, and small equiaxial dimples. When the annealing time is more than or equal to 2 h, the fracture exhibits a ductile fracture mode and is completely composed of equiaxial dimples. The optimal annealing process is achieved at 740 ℃ for 2 h, in which the tensile strength, yield strength, elongation, and microhardness of the alloy plate is 984 MPa, 941 MPa, 15.27%, and HV 347.67, respectively. The main results from this paper can guide the formulation of the annealing process of high-strength corrosion-resistant titanium alloy and provide a scientific basis for solving problems encountered in the actual production of titanium alloy.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164