<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

一種基于輕量級神經網絡的高鐵輪對軸承故障診斷方法

Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network

  • 摘要: 深度神經網絡技術用于機械設備故障診斷展現出了巨大潛力,但繁重復雜的計算量對計算機硬件提出了嚴苛的要求,嚴重限制了其在實際工程中的應用。基于此提出一種新型的輕量級神經網絡ShuffleNet,用于高速列車輪對軸承故障診斷研究。該網絡模型基于模塊化設計思想,包含多個高效率的ShuffleNet單元,通過運用分組卷積與深度可分離卷積技術極大改善了傳統卷積操作的運算效率;同時使用通道混洗方法克服了通道分組帶來的約束,改進了網絡的損失精度。實驗分析表明,所提網絡模型可有效用于復雜工況下高速列車輪對軸承故障診斷,相比傳統卷積神經網絡、殘差網絡和Xception等當前深度神經網絡模型,在保證診斷精度的同時,運行效率得到大幅提升。這為深度神經網絡技術應用于工程實際,克服計算機硬件條件限制提供了一條新的途徑。

     

    Abstract: Deep learning is gaining attention in the field of mechanical equipment fault diagnosis. With the help of deep learning techniques, deep neural networks (DNNs) have great potential for machinery fault diagnosis. Deep learning is a subset of machine learning that uses artificial neural networks with multiple layers to deliver state-of-the-art accuracy in various classifications of mechanical rotating parts. Convolutional neural networks (CNNs) are able to automatically learn multiple levels of representations from raw input datawithout introducing hand-coded rules or domain knowledge. Because of this powerful representation learning ability, deep learning has achieved great success in many fields. Although deep learning has achieved promising results in the field of machinery fault diagnosis, existing neural networks suffer from many limitations. The heavy and complex calculation amount puts forward strict requirements for computer hardware, which severely limits its application in actual engineering. To address this issue, this paper proposed a novel lightweight neural network model, ShuffleNet, for high-speed train wheelset bearing fault diagnosis. Based on the thought of module design, this model comprised several ShuffleNet units. Group convolution (GC) and deep separable convolution were used to improve the operation efficiency of traditional convolution in the ShuffleNet unit. Meanwhile, channel shuffle (CS) technology was adopted to overcome the grouping constraint caused by GC and improved the loss accuracy ofthenetwork model. CS operation makes it possible to build more powerful structures with multiple GC layers. Experimental results show that the proposed network model canbe applied in wheelset bearing fault diagnosis underacomplex working condition. Compared to the traditional CNN, ResNets, and Xception, the proposed method can greatly reducethecomputation cost while maintaining diagnosis accuracy. It is clear that the proposed lightweight neural network model, ShuffleNet, is superior to the above comparison models. This provides a new way forengineering applications of DNN technology and overcoming the limitations of computer hardware.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164