<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

生物質炭復合團塊在高爐中的反應行為

張壯壯 王強 唐惠慶 薛慶國

張壯壯, 王強, 唐惠慶, 薛慶國. 生物質炭復合團塊在高爐中的反應行為[J]. 工程科學學報, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
引用本文: 張壯壯, 王強, 唐惠慶, 薛慶國. 生物質炭復合團塊在高爐中的反應行為[J]. 工程科學學報, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
ZHANG Zhuang-zhuang, WANG Qiang, TANG Hui-qing, XUE Qing-guo. Reaction behavior of the biochar composite briquette in the blast furnace[J]. Chinese Journal of Engineering, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
Citation: ZHANG Zhuang-zhuang, WANG Qiang, TANG Hui-qing, XUE Qing-guo. Reaction behavior of the biochar composite briquette in the blast furnace[J]. Chinese Journal of Engineering, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002

生物質炭復合團塊在高爐中的反應行為

doi: 10.13374/j.issn2095-9389.2020.11.30.002
基金項目: 國家自然科學基金資助項目(U1960205)
詳細信息
    通訊作者:

    E-mail:hqtang@ustb.edu.cn

  • 中圖分類號: TF537

Reaction behavior of the biochar composite briquette in the blast furnace

More Information
  • 摘要: 研究了生物質復合團塊在高爐中的反應行為,該復合團塊主要成分(質量分數)為:11.1% C、72.7% Fe3O4、11.25% FeO、0.77% Fe和4.67% 脈石。并對高爐環境下復合團塊的反應行為進行了建模,通過高爐氣氛下的等溫動力學實驗確定模型參數并進行了模型驗證。進一步,結合模型模擬,模擬高爐環境的實驗和團塊微觀結構分析,對模擬高爐條件下和實際高爐條件下團塊的反應行為進行了分析。研究結果表明:模擬高爐條件下,在60 min (973 K) 到120 min (1273 K) 期間, 團塊的微觀結構發生明顯變化,其微觀結構由渣相網絡結構向金屬鐵網絡結構轉變。在實際高爐中,復合團塊的反應進程主要包括三個階段:團塊的高爐煤氣還原(473~853 K)、團塊的高爐煤氣還原和部分自還原(853~953 K)以及團塊的完全自還原(953~1150 K)。在團塊自還原參與階段,與燒結礦相比,團塊內氧化鐵還原速率更快;與焦炭相比,團塊內生物質炭氣化速率更高。同時,在此階段,團塊有提高高爐煤氣利用率和降低高爐熱儲備區溫度的作用。

     

  • 圖  1  模擬高爐條件下氣體成分和溫度變化曲線

    Figure  1.  Simulated blast furnace (BF) gas composition and temperature profiles

    圖  2  反應模型

    Figure  2.  Model concept

    圖  3  團塊的XRD圖譜

    Figure  3.  XRD pattern of the BCB

    圖  4  團塊樣品的SEM圖像.(a)燒結氧化鐵基體; (b)生物質炭顆粒的微觀形貌

    Figure  4.  SEM images of the BCB sample: (a) sintered iron-oxide texture; (b) microstructure of biochar particles

    圖  5  模擬高爐條件下部分反應后復合團塊冷抗碎強度的變化

    Figure  5.  Change of the BCB cold crushing strength after partial reaction under simulated BF conditions

    圖  6  用于確定ags的數據點

    Figure  6.  Selected data points for determining ags

    圖  7  不同實驗方案下實驗和模型預測的質量損失曲線對比

    Figure  7.  Measured and model-predicted mass-loss curves under different scenarios

    圖  8  生物質炭復合團塊樣品的圖像. (a) 原始圖像; (b) 在方案Ⅰ下反應后圖像;(c) 在方案Ⅱ下反應后圖像; (d) 在方案Ⅲ下反應后圖像

    Figure  8.  Images of the BCB sample: (a) original; (b) after reaction under scenario Ⅰ; (c) after reaction under scenario Ⅱ; (d) after reaction under Scenario Ⅲ

    圖  9  模擬高爐條件下生物質炭復合團塊還原行為. (a)還原分數隨時間的變化; (b)生物炭轉化率隨時間的變化

    Figure  9.  BCB reduction behavior under simulated BF conditions: (a) change in reduction fraction with time; (b) change in biochar conversion with time

    圖  10  不同時間下生物質炭復合團塊的XRD譜. (a) 60 min; (b) 90 min; (c) 120 min

    Figure  10.  XRD patterns of BCB at different times: (a) 60 min; (b) 90 min; (c) 120 min

    圖  11  不同時間生物質炭復合團塊的掃描電鏡圖像. (a) 60 min; (b) 90 min; (c) 120 min

    Figure  11.  SEM images of BCB at different times: (a) 60 min; (b) 90 min; (c) 120 min

    圖  12  (a)用于建模的固體流動路徑的圖示;(b)高爐變量沿路徑的變化

    Figure  12.  (a) Illustration of solid flowing path for modeling; (b) change of BF variables along the path

    圖  13  實際高爐中的生物質炭復合團塊反應行為.(a)沿路徑的還原分數變化;(b)沿路徑的生物炭轉化率變化;(c)沿路徑的CO和CO2生成速率變化;(d)在1150至1168 K溫度下CO和CO2的生成速率變化

    Figure  13.  BCB reaction behavior in the BF: (a) change in reduction fraction along the path; (b) change in biochar conversion along the path; (c) changes in generation rates of CO and CO2 along the path; (d) changes in generation rates of CO and CO2 from 1150 to 1168 K

    圖  14  生物質炭復合團塊和高爐煤氣在生物質炭復合團塊自還原區區域的CO還原勢

    Figure  14.  CO potentials of the BCB and the BF gas in the zone with BCB self-reduction

    表  1  制備用生物炭工業分析(質量分數)

    Table  1.   Proximate analysis of the prepared biochar fines %

    VolatileMoistureFixed carbonAsh
    3.912.9588.234.91
    下載: 導出CSV

    表  2  等溫團塊動力學實驗方案

    Table  2.   Scenarios for isothermal biochar composite briquette ( BCB) kinetic tests

    ScenarioTemperature/KCO2 volume fraction/%CO volume fraction /%N2 volume fraction /%
    1073203050
    1173153550
    1273104050
    下載: 導出CSV

    表  3  模型中涉及的反應

    Table  3.   Reactions involved in the model

    No.ReactionReaction rate/(mol·m–3·s–1)Ref.
    1$ {\text{3 F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 2{\text{ F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}({\text{g}}) $${R_i} = \dfrac{ {({P_{ {\text{CO} } } } - {P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }/{K_i})/(8.314T)} }{ {({K_i}/({k_i}(1 + {K_i}))} }{(1 - {f_i})^{2/3} }{a_ {\text{gs} } }$(i=1,2,3), ${K_1} = \exp ({\text{7} }{\text{.255 + 3720} }/T),$ ${k_1} = \exp ( - 1.445 - 6038/T),$ ${K_2} = \exp (5.289 - 4711/T),$ ${k_{\text{2}}} = \exp ( - {\text{2}}{\text{.515}} - {\text{4811}}/T),$ ${K_3} = \exp ( - 3.127 + 2879.63/T),$ ${k_3} = \exp (0.805 - 7385/T)$[24,27]
    2$ {\text{F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 3{\text{ FeO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $
    3$ {\text{FeO}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = {\text{Fe}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $
    4$ {\text{C}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) = 2{\text{ CO(g)}} $$\begin{gathered} {R_4}{\text{ = } }{\rho _{ {\text{C,0} } } }{k_{\text{4} } }{\left( { {\text{1} } - {f_{\text{4} } } } \right)^{ {\text{2/3} } } }{\text{(} }{P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }{\text{/1} }{\text{.01} } \times {\text{1} }{ {\text{0} }^{\text{5} } }{\text{)/} }{M_{\text{C} } }_{\text{, } } \hfill \\ {k_4} = 1{\text{5} }00\exp ( - 13{\text{1} }00{\text{0} }/RT) \hfill \\ \end{gathered}$[28]
    下載: 導出CSV

    表  4  生物質炭復合團塊的礦物組成 (質量分數)

    Table  4.   Mineralogical composition of BCB %

    CarbonMagnetiteWustiteMetallic ironGangue
    11.1072.2111.250.774.67
    下載: 導出CSV

    表  5  不同的實驗方案下團塊的反應參數和實驗測量值及模型預測值

    Table  5.   Measured and model-predicted parameters of the BCB reduced under different scenarios

    ScenarioBCB reduction fractionBCB biochar conversion
    MeasurementModel predictionMeasurementModel prediction
    I0.140.160.100.20
    II0.440.490.330.53
    III0.850.900.860.94
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Cai J J. Air consumption and waste gas emission of steel industry. Iron Steel, 2019, 54(4): 1

    蔡九菊. 鋼鐵工業的空氣消耗與廢氣排放. 鋼鐵, 2019, 54(4):1
    [2] Ariyama T, Sato M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ Int, 2006, 46(12): 1736 doi: 10.2355/isijinternational.46.1736
    [3] An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
    [4] Wang P, Jiang Z, Zhang X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683

    汪鵬, 姜澤毅, 張欣欣, 等. 中國鋼鐵工業流程結構、能耗和排放長期情景預測. 北京科技大學學報, 2014, 36(12):1683
    [5] Zhang W L. Current situation and future technical prospect of blast furnace ironmaking in China. China Met Bull, 2019(2): 10 doi: 10.3969/j.issn.1672-1667.2019.02.005

    張文來. 中國高爐煉鐵現狀及未來技術展望. 中國金屬通報, 2019(2):10 doi: 10.3969/j.issn.1672-1667.2019.02.005
    [6] Zhao J, Zuo H B, Wang Y J, et al. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 2020, 47(3): 296 doi: 10.1080/03019233.2019.1639029
    [7] Florentino-Madiedo L, Díaz-Faes E, Barriocanal C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 2019, 193: 212 doi: 10.1016/j.fuproc.2019.05.017
    [8] Cardona L M V, Narita C Y, Takano C, et al. Characterisation of coal-charcoal composite biocoke as a sustainable alternative for ironmaking. Can Metall Q, 2017, 56(2): 190 doi: 10.1080/00084433.2017.1299342
    [9] Zandi M, Martinez-Pacheco M, Fray T A T. Biomass for iron ore sintering. Miner Eng, 2010, 23(14): 1139 doi: 10.1016/j.mineng.2010.07.010
    [10] Kieush L, Yaholnyk M, Boyko M, et al. Study of biomass utilisation in the iron ore sintering. Acta Metall Slovaca, 2019, 25(1): 55 doi: 10.12776/ams.v1i1.1225
    [11] Liu Y R, Shen Y S. CFD study of charcoal combustion in a simulated ironmaking blast furnace. Fuel Process Technol, 2019, 191: 152 doi: 10.1016/j.fuproc.2019.04.004
    [12] Wang C, Mellin P, L?vgren J, et al. Biomass as blast furnace injectant-Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag, 2015, 102: 217 doi: 10.1016/j.enconman.2015.04.013
    [13] Mathieson J G, Rogers H, Somerville M A, et al. Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int, 2012, 52(8): 1489 doi: 10.2355/isijinternational.52.1489
    [14] Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-A potential raw material for iron-making. Steel Res Int, 2014, 85(3): 293 doi: 10.1002/srin.201300072
    [15] Tanaka Y, Ueno T, Okumura K, et al. Reaction behavior of coal rich composite iron ore hot briquettes under load at high temperatures until 1400℃. ISIJ Int, 2011, 51(8): 1240 doi: 10.2355/isijinternational.51.1240
    [16] Mizoguchi H, Suzuki H, Hayashi S. Influence of mixing coal composite iron ore hot briquettes on blast furnace simulated reaction behavior in a packed mixed bed. ISIJ Int, 2011, 51(8): 1247 doi: 10.2355/isijinternational.51.1247
    [17] Wu K, Qi Y H, Zhao J W, et al. Reduction and strength of after reduction of cooled pellet contain carbon. J Univ Sci Technol Beijing, 2000, 22(2): 101 doi: 10.3321/j.issn:1001-053X.2000.02.002

    吳鏗, 齊淵洪, 趙繼偉, 等. 含碳球團的還原性和還原冷卻后的強度. 北京科技大學學報, 2000, 22(2):101 doi: 10.3321/j.issn:1001-053X.2000.02.002
    [18] Wang H T, Chu M S, Zhao W, et al. Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette. Metall Mater Trans B, 2019, 50(1): 324 doi: 10.1007/s11663-018-1481-7
    [19] Kasai A, Toyota H, Nozawa K, et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int, 2011, 51(8): 1333 doi: 10.2355/isijinternational.51.1333
    [20] Ueda S, Watanabe K, Yanagiya K, et al. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ Int, 2009, 49(10): 1505 doi: 10.2355/isijinternational.49.1505
    [21] Mousa E, Lundgren M, ?kvist L S, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J Sustain Metall, 2019, 5(3): 391 doi: 10.1007/s40831-019-00229-7
    [22] Tang H Q, Liu S H, Rong T. Preparation of high-carbon metallic briquette for blast furnace application. ISIJ Int, 2019, 59(1): 22 doi: 10.2355/isijinternational.ISIJINT-2018-421
    [23] Yu Z, Liu Z, Tang H Q, et al. Preparation of high-strength biochar composite briquette for blast furnace ironmaking. Metall Res Technol, 2021, 118(1): 109 doi: 10.1051/metal/2020083
    [24] Tang H Q, Yun Z W, Fu X F, et al. Modeling and experimental study of ore-carbon briquette reduction under CO–CO2 atmosphere. Metals, 2018, 8(4): 205 doi: 10.3390/met8040205
    [25] Turkdogan E T. Blast furnace reactions. Metall Trans B, 1978, 9(2): 163
    [26] Tang H, Sun Y J, Rong T. Experimental and numerical investigation of reaction behavior of carbon composite briquette in blast furnace. Metals, 2019, 10(1): 49 doi: 10.3390/met10010049
    [27] Ueda S, Yanagiya K, Watanabe K, et al. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int, 2009, 49(6): 827 doi: 10.2355/isijinternational.49.827
    [28] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
    [29] Ge Q. Kinetics of gas-solid reactions. Beijing: Atomic Energy Press, 1991

    葛慶仁. 氣固反應動力學. 北京: 原子能出版社, 1991
    [30] Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach. Metall Mater Trans B, 2014, 45(6): 2395 doi: 10.1007/s11663-014-0132-x
    [31] Leimalm U, Forsmo S, Dahlstedt A, et al. Blast furnace pellet textures during reduction and correlation to strength. ISIJ Int, 2010, 50(10): 1396 doi: 10.2355/isijinternational.50.1396
    [32] Zhou J C, Xue Z L, Li Z Q, et al. Characteristics of grain growth of metallic phase in direct reduction of high phosphorus oolitic hematite. J Wuhan Univ Sci Technol (Nat Sci Ed), 2007, 30(5): 458

    周繼程, 薛正良, 李宗強, 等. 高磷鮞狀赤鐵礦直接還原過程中鐵顆粒長大特性研究. 武漢科技大學學報(自然科學版), 2007, 30(5):458
    [33] Tang H Q, Rong T, Fan K. Numerical investigation of applying high-carbon metallic briquette in blast furnace ironmaking. ISIJ Int, 2019, 59(5): 810 doi: 10.2355/isijinternational.ISIJINT-2018-673
    [34] Chu M S, Nogami H, Yagi J I. Numerical analysis on charging carbon composite agglomerates into blast furnace. ISIJ Int, 2004, 44(3): 510 doi: 10.2355/isijinternational.44.510
    [35] Kasai A, Matsui Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int, 2004, 44(12): 2073 doi: 10.2355/isijinternational.44.2073
  • 加載中
圖(14) / 表(5)
計量
  • 文章訪問數:  572
  • HTML全文瀏覽量:  256
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-04-30
  • 網絡出版日期:  2022-05-11
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回