-
摘要: 研究了生物質復合團塊在高爐中的反應行為,該復合團塊主要成分(質量分數)為:11.1% C、72.7% Fe3O4、11.25% FeO、0.77% Fe和4.67% 脈石。并對高爐環境下復合團塊的反應行為進行了建模,通過高爐氣氛下的等溫動力學實驗確定模型參數并進行了模型驗證。進一步,結合模型模擬,模擬高爐環境的實驗和團塊微觀結構分析,對模擬高爐條件下和實際高爐條件下團塊的反應行為進行了分析。研究結果表明:模擬高爐條件下,在60 min (973 K) 到120 min (1273 K) 期間, 團塊的微觀結構發生明顯變化,其微觀結構由渣相網絡結構向金屬鐵網絡結構轉變。在實際高爐中,復合團塊的反應進程主要包括三個階段:團塊的高爐煤氣還原(473~853 K)、團塊的高爐煤氣還原和部分自還原(853~953 K)以及團塊的完全自還原(953~1150 K)。在團塊自還原參與階段,與燒結礦相比,團塊內氧化鐵還原速率更快;與焦炭相比,團塊內生物質炭氣化速率更高。同時,在此階段,團塊有提高高爐煤氣利用率和降低高爐熱儲備區溫度的作用。Abstract: Blast furnace (BF) ironmaking is considered to be the most popular technology to meet the increasing steel demand worldwide, but it is responsible for the most CO2 emissions in the blast furnace-basic oxygen furnace production process. The utilization of biomass/biochar in BF ironmaking is an effective countermeasure to reduce its CO2 emission, as biomass/biochar is a renewable carbon source and environment neutron. Charging the biochar composite briquette (BCB) is a convenient method to introduce biomass/biochar into BF. The present research investigates the reaction behavior of the BCB in the BF. The BCB for the BF was prepared using cold briquetting followed by low-temperature heat treatment. The BCB was composed of 11.1% carbon, 72.7% magnetite, 11.25% wustite, 0.77% metallic iron, and 4.67% gangue (all in mass fraction). The BCB reaction model in the BF was developed considering the step-wise gaseous reduction of iron-oxide particles, CO2 gasification of biochar particles, internal gas diffusion in the BCB, and mass transfer between the BCB and the environment. Isothermal BCB reaction tests were conducted for model validation. Using the model, the changes of the BCB iron-oxide reduction fraction and biochar conversion rate and the BCB microstructure evolution under simulated BF conditions were analyzed. The model was also applied to predict the change of the BCB iron-oxide reduction fraction, change of the BCB biochar conversion, change of the BCB CO generating rate, and change of the BCB CO2 generation rate along a solid flowing path near the mid-radius in an actual BF. Results showed that under simulated BF conditions, the BCB underwent fast self-reduction and structure changes (forming low-melting compounds and transforming from the slag matrix to the iron network) from 60 min (973 K) to 120 min (1273 K). In an actual BF, the BCB reaction route is mainly divided into three stages: (1) reduction by BF gas (473–853 K), (2) reduction by the BF gas and partial self-reduction (853–953 K), and (3) full self-reduction (953–1150 K). In the stages involving BCB self-reduction, the iron oxide in the BCB reduces faster than the sinter, and the biochar gasifies faster than the coke. Moreover, in these stages, the BCB has the functions of increasing the BF gas utilization efficiency and lowering the temperature level of the BF thermal reserve zone.
-
Key words:
- biochar /
- composite briquette /
- blast furnace /
- reaction model /
- reaction behavior
-
圖 13 實際高爐中的生物質炭復合團塊反應行為.(a)沿路徑的還原分數變化;(b)沿路徑的生物炭轉化率變化;(c)沿路徑的CO和CO2生成速率變化;(d)在1150至1168 K溫度下CO和CO2的生成速率變化
Figure 13. BCB reaction behavior in the BF: (a) change in reduction fraction along the path; (b) change in biochar conversion along the path; (c) changes in generation rates of CO and CO2 along the path; (d) changes in generation rates of CO and CO2 from 1150 to 1168 K
表 1 制備用生物炭工業分析(質量分數)
Table 1. Proximate analysis of the prepared biochar fines
% Volatile Moisture Fixed carbon Ash 3.91 2.95 88.23 4.91 表 2 等溫團塊動力學實驗方案
Table 2. Scenarios for isothermal biochar composite briquette ( BCB) kinetic tests
Scenario Temperature/K CO2 volume fraction/% CO volume fraction /% N2 volume fraction /% Ⅰ 1073 20 30 50 Ⅱ 1173 15 35 50 Ⅲ 1273 10 40 50 表 3 模型中涉及的反應
Table 3. Reactions involved in the model
No. Reaction Reaction rate/(mol·m–3·s–1) Ref. 1 $ {\text{3 F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 2{\text{ F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ ${R_i} = \dfrac{ {({P_{ {\text{CO} } } } - {P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }/{K_i})/(8.314T)} }{ {({K_i}/({k_i}(1 + {K_i}))} }{(1 - {f_i})^{2/3} }{a_ {\text{gs} } }$(i=1,2,3), ${K_1} = \exp ({\text{7} }{\text{.255 + 3720} }/T),$ ${k_1} = \exp ( - 1.445 - 6038/T),$ ${K_2} = \exp (5.289 - 4711/T),$ ${k_{\text{2}}} = \exp ( - {\text{2}}{\text{.515}} - {\text{4811}}/T),$ ${K_3} = \exp ( - 3.127 + 2879.63/T),$ ${k_3} = \exp (0.805 - 7385/T)$ [24,27] 2 $ {\text{F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 3{\text{ FeO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ 3 $ {\text{FeO}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = {\text{Fe}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ 4 $ {\text{C}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) = 2{\text{ CO(g)}} $ $\begin{gathered} {R_4}{\text{ = } }{\rho _{ {\text{C,0} } } }{k_{\text{4} } }{\left( { {\text{1} } - {f_{\text{4} } } } \right)^{ {\text{2/3} } } }{\text{(} }{P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }{\text{/1} }{\text{.01} } \times {\text{1} }{ {\text{0} }^{\text{5} } }{\text{)/} }{M_{\text{C} } }_{\text{, } } \hfill \\ {k_4} = 1{\text{5} }00\exp ( - 13{\text{1} }00{\text{0} }/RT) \hfill \\ \end{gathered}$ [28] 表 4 生物質炭復合團塊的礦物組成 (質量分數)
Table 4. Mineralogical composition of BCB
% Carbon Magnetite Wustite Metallic iron Gangue 11.10 72.21 11.25 0.77 4.67 表 5 不同的實驗方案下團塊的反應參數和實驗測量值及模型預測值
Table 5. Measured and model-predicted parameters of the BCB reduced under different scenarios
Scenario BCB reduction fraction BCB biochar conversion Measurement Model prediction Measurement Model prediction I 0.14 0.16 0.10 0.20 II 0.44 0.49 0.33 0.53 III 0.85 0.90 0.86 0.94 259luxu-164 -
參考文獻
[1] Cai J J. Air consumption and waste gas emission of steel industry. Iron Steel, 2019, 54(4): 1蔡九菊. 鋼鐵工業的空氣消耗與廢氣排放. 鋼鐵, 2019, 54(4):1 [2] Ariyama T, Sato M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ Int, 2006, 46(12): 1736 doi: 10.2355/isijinternational.46.1736 [3] An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044 [4] Wang P, Jiang Z, Zhang X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683汪鵬, 姜澤毅, 張欣欣, 等. 中國鋼鐵工業流程結構、能耗和排放長期情景預測. 北京科技大學學報, 2014, 36(12):1683 [5] Zhang W L. Current situation and future technical prospect of blast furnace ironmaking in China. China Met Bull, 2019(2): 10 doi: 10.3969/j.issn.1672-1667.2019.02.005張文來. 中國高爐煉鐵現狀及未來技術展望. 中國金屬通報, 2019(2):10 doi: 10.3969/j.issn.1672-1667.2019.02.005 [6] Zhao J, Zuo H B, Wang Y J, et al. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 2020, 47(3): 296 doi: 10.1080/03019233.2019.1639029 [7] Florentino-Madiedo L, Díaz-Faes E, Barriocanal C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 2019, 193: 212 doi: 10.1016/j.fuproc.2019.05.017 [8] Cardona L M V, Narita C Y, Takano C, et al. Characterisation of coal-charcoal composite biocoke as a sustainable alternative for ironmaking. Can Metall Q, 2017, 56(2): 190 doi: 10.1080/00084433.2017.1299342 [9] Zandi M, Martinez-Pacheco M, Fray T A T. Biomass for iron ore sintering. Miner Eng, 2010, 23(14): 1139 doi: 10.1016/j.mineng.2010.07.010 [10] Kieush L, Yaholnyk M, Boyko M, et al. Study of biomass utilisation in the iron ore sintering. Acta Metall Slovaca, 2019, 25(1): 55 doi: 10.12776/ams.v1i1.1225 [11] Liu Y R, Shen Y S. CFD study of charcoal combustion in a simulated ironmaking blast furnace. Fuel Process Technol, 2019, 191: 152 doi: 10.1016/j.fuproc.2019.04.004 [12] Wang C, Mellin P, L?vgren J, et al. Biomass as blast furnace injectant-Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag, 2015, 102: 217 doi: 10.1016/j.enconman.2015.04.013 [13] Mathieson J G, Rogers H, Somerville M A, et al. Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int, 2012, 52(8): 1489 doi: 10.2355/isijinternational.52.1489 [14] Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-A potential raw material for iron-making. Steel Res Int, 2014, 85(3): 293 doi: 10.1002/srin.201300072 [15] Tanaka Y, Ueno T, Okumura K, et al. Reaction behavior of coal rich composite iron ore hot briquettes under load at high temperatures until 1400℃. ISIJ Int, 2011, 51(8): 1240 doi: 10.2355/isijinternational.51.1240 [16] Mizoguchi H, Suzuki H, Hayashi S. Influence of mixing coal composite iron ore hot briquettes on blast furnace simulated reaction behavior in a packed mixed bed. ISIJ Int, 2011, 51(8): 1247 doi: 10.2355/isijinternational.51.1247 [17] Wu K, Qi Y H, Zhao J W, et al. Reduction and strength of after reduction of cooled pellet contain carbon. J Univ Sci Technol Beijing, 2000, 22(2): 101 doi: 10.3321/j.issn:1001-053X.2000.02.002吳鏗, 齊淵洪, 趙繼偉, 等. 含碳球團的還原性和還原冷卻后的強度. 北京科技大學學報, 2000, 22(2):101 doi: 10.3321/j.issn:1001-053X.2000.02.002 [18] Wang H T, Chu M S, Zhao W, et al. Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette. Metall Mater Trans B, 2019, 50(1): 324 doi: 10.1007/s11663-018-1481-7 [19] Kasai A, Toyota H, Nozawa K, et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int, 2011, 51(8): 1333 doi: 10.2355/isijinternational.51.1333 [20] Ueda S, Watanabe K, Yanagiya K, et al. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ Int, 2009, 49(10): 1505 doi: 10.2355/isijinternational.49.1505 [21] Mousa E, Lundgren M, ?kvist L S, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J Sustain Metall, 2019, 5(3): 391 doi: 10.1007/s40831-019-00229-7 [22] Tang H Q, Liu S H, Rong T. Preparation of high-carbon metallic briquette for blast furnace application. ISIJ Int, 2019, 59(1): 22 doi: 10.2355/isijinternational.ISIJINT-2018-421 [23] Yu Z, Liu Z, Tang H Q, et al. Preparation of high-strength biochar composite briquette for blast furnace ironmaking. Metall Res Technol, 2021, 118(1): 109 doi: 10.1051/metal/2020083 [24] Tang H Q, Yun Z W, Fu X F, et al. Modeling and experimental study of ore-carbon briquette reduction under CO–CO2 atmosphere. Metals, 2018, 8(4): 205 doi: 10.3390/met8040205 [25] Turkdogan E T. Blast furnace reactions. Metall Trans B, 1978, 9(2): 163 [26] Tang H, Sun Y J, Rong T. Experimental and numerical investigation of reaction behavior of carbon composite briquette in blast furnace. Metals, 2019, 10(1): 49 doi: 10.3390/met10010049 [27] Ueda S, Yanagiya K, Watanabe K, et al. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int, 2009, 49(6): 827 doi: 10.2355/isijinternational.49.827 [28] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2 [29] Ge Q. Kinetics of gas-solid reactions. Beijing: Atomic Energy Press, 1991葛慶仁. 氣固反應動力學. 北京: 原子能出版社, 1991 [30] Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach. Metall Mater Trans B, 2014, 45(6): 2395 doi: 10.1007/s11663-014-0132-x [31] Leimalm U, Forsmo S, Dahlstedt A, et al. Blast furnace pellet textures during reduction and correlation to strength. ISIJ Int, 2010, 50(10): 1396 doi: 10.2355/isijinternational.50.1396 [32] Zhou J C, Xue Z L, Li Z Q, et al. Characteristics of grain growth of metallic phase in direct reduction of high phosphorus oolitic hematite. J Wuhan Univ Sci Technol (Nat Sci Ed) , 2007, 30(5): 458周繼程, 薛正良, 李宗強, 等. 高磷鮞狀赤鐵礦直接還原過程中鐵顆粒長大特性研究. 武漢科技大學學報(自然科學版), 2007, 30(5):458 [33] Tang H Q, Rong T, Fan K. Numerical investigation of applying high-carbon metallic briquette in blast furnace ironmaking. ISIJ Int, 2019, 59(5): 810 doi: 10.2355/isijinternational.ISIJINT-2018-673 [34] Chu M S, Nogami H, Yagi J I. Numerical analysis on charging carbon composite agglomerates into blast furnace. ISIJ Int, 2004, 44(3): 510 doi: 10.2355/isijinternational.44.510 [35] Kasai A, Matsui Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int, 2004, 44(12): 2073 doi: 10.2355/isijinternational.44.2073 -