<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于環境語義信息的同步定位與地圖構建方法綜述

Survey of simultaneous localization and mapping based on environmental semantic information

  • 摘要: 同步定位與地圖構建技術(SLAM)是當前機器人領域的重要研究熱點,傳統的SLAM技術雖然在實時性方面已經達到較高的水平,但在定位精度和魯棒性等方面還存在較大缺陷,所構建的環境地圖雖然一定程度上滿足了機器人的定位需要,但不足以支撐機器人自主完成導航、避障等任務,交互性能不足。隨著深度學習技術的發展,利用深度學習方法提取環境語義信息,并與SLAM技術結合,越來越受到學者的關注。本文綜述了環境語義信息應用到同步定位與地圖構建領域的最新研究進展,重點介紹和總結了語義信息與傳統視覺SLAM在系統定位和地圖構建方面結合的突出研究成果,并對傳統視覺SLAM算法與語義SLAM算法做了深入的對比研究。最后,展望了語義SLAM研究的發展方向。

     

    Abstract: The simultaneous localization and mapping (SLAM) technique is an important research direction in robotics. Although the traditional SLAM has reached a high level of real-time performance, major shortcomings still remain in its positioning accuracy and robustness. Using traditional SLAM, a geometric environment map can be constructed that can satisfy the pose estimation of robots. However, the interactive performance of this map is insufficient to support a robot in completing self-navigation and obstacle avoidance. One popular practical application of SLAM is to add semantic information by combining deep learning methods with SLAM. Systems that introduce environmental semantic information belong to semantic SLAM systems. Introduction of semantic information is of great significance for improving the positioning performance of a robot, optimizing the robustness of the robot system, and improving the scene-understanding ability of the robot. Semantic information improves recognition accuracy in complex scenes, which brings more optimization conditions for an odometer, pose estimation, and loop detection, etc. Therefore, positioning accuracy and robustness is improved. Moreover, semantic information aids in the promotion of data association from the traditional pixel level to the object level so that the perceived geometric environmental information can be assigned with semantic tags to obtain a high-level semantic map. This then aids a robot in understanding an autonomous environment and human–computer interaction. This paper summarized the latest researches that apply semantic information to SLAM. The prominent achievements of semantics combined with the traditional visual SLAM of localization and mapping were also discussed. In addition, the semantic SLAM was compared with the traditional SLAM in detail. Finally, future research topics of advanced semantic SLAM were explored. This study aims to serve as a guide for future researchers in applying semantic information to tackle localization and mapping problems.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164