<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于IPSO-GRU深度學習算法的海底管道缺陷尺寸磁記憶定量反演模型

Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect

  • 摘要: 針對海底管道缺陷磁記憶定量反演的難題,提出一種基于改進粒子群優化的門控循環神經網絡模型,即IPSO-GRU模型。以兩端焊有盲板的X52管道作為實驗材料,其上預制有不同直徑、深度的缺陷,采用TSC-5M-32磁記憶檢測儀,外接11-6W非接觸探頭,進行水下磁記憶檢測試驗,提取不同缺陷尺寸的磁記憶信號特征值。考慮到磁記憶信號特征值隨缺陷尺寸呈復雜的非線性變化,引入門控循環神經網絡,利用其雙門結構能夠記憶缺陷處的信號特征,非線性回歸擬合能力強的特點,構建海底管道缺陷定量反演模型,進一步考慮到模型超參數選擇的隨機性,采用改進粒子群算法進行超參數尋優。驗證結果表明:該模型對缺陷深度反演平均精度達96%;對缺陷直徑反演平均精度達93%,為海底管道缺陷的磁記憶定量化識別與反演提供了新的思路和方法。

     

    Abstract: As submarine oil and gas are exploited further, the safety of submarine pipelines is receiving increasing attention. Due to the complex operating environment and harsh working environment, submarine pipelines are vulnerable to damage; this leads to accidents. Once an accident occurs in the submarine pipeline, it not only causes massive economic losses but also adversely affects marine ecology. The metal magnetic memory (MMM) technology was proposed in the 20th century to detect macro defects and hidden defects early. To overcome the difficulties of the MMM quantitative inversion of submarine pipeline defects, this study proposed a gated recurrent unit (GRU) neural network model based on improved particle swarm optimization (IPSO). The X52 pipe specimens with blind plates that were welded at both ends were used, pipes had prefabricated defects of different diameters and depths. An 11-6W noncontact probe was used for underwater testing; the host was the TSC-5M-32 MMM Instrument. After conducting simulated submarine tests to obtain the MMM signals of pipe defects, the characteristic parameters of MMM signals with different defect sizes were extracted. It is found that the MMM characteristic parameters exhibit a complex nonlinear variation for different defect dimensions. Exploiting the GRU’s dual-gate structure that can remember the signal characteristics of defects and its superior nonlinear regression fitting ability, a quantitative MMM GRU inversion model was established for detecting submarine pipeline defects. Furthermore, considering the randomness of the hyper-parameter selection in the model, the IPSO algorithm was used to optimize the hyper-parameters. Validation results show that the model has an average accuracy of up to 96% and 93% for defect depth inversion and defect diameter inversion, respectively. Using the MMM method, this study provides a new idea and method for the quantitative identification and defect inversion of submarine pipeline defects.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164