<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

二氧化碳相變致裂技術研究進展與展望

A review on fracturing technique with carbon dioxide phase transition

  • 摘要: 二氧化碳相變致裂作為一種環境友好的綠色破巖技術,具有破巖效率高、振動小、無污染等優點,近年來已成為巖石破碎與開挖領域的熱門研究課題,相關研究發展迅速。大量學者運用理論分析、實驗研究和數值模擬等手段對二氧化碳相變致裂技術進行了廣泛探究,并取得了一些有益進展。通過對現有相關研究成果的調研分析,闡述了二氧化碳相變致裂技術的破巖機理,回顧了二氧化碳相變致裂荷載特征及其測試手段,歸納了致裂荷載表征方法,概括了致裂荷載與致裂效果的主要影響因素,分析了二氧化碳相變致裂的有害效應,總結了二氧化碳相變致裂技術在多領域的應用,并探討了二氧化碳相變致裂當前存在的問題與未來挑戰,以期為二氧化碳相變致裂技術的理論研究和工程應用推廣提供參考。

     

    Abstract: With continuously increasing urban construction, more underground projects require the breaking of rocks near sensitive areas, such as hospitals, schools, and residential areas. On one hand, since conventional blasting that uses explosives has a negative impact on the safety of the surrounding buildings and brings about noise and flying rocks, the use of explosives are sometimes not allowed. On the other hand, the efficiency of mechanical rock excavation is very low, resulting in a low speed of rock excavation and high operation cost. In view of this situation, techniques that incorporate carbon dioxide phase transition fracturing have been tried in rock fragmentation in complex and sensitive environments such as those mentioned above. Furthermore, carbon dioxide phase transition fracturing is also regarded as an ideal substitute for the explosives in the field of coal permeability improvement. As an environmentally friendly rock-breaking technology, carbon dioxide phase transition fracturing has the advantages of high excavation efficiency, low vibration, and no pollution. In recent years, it has become a hot topic in the field of rock breakage and excavation. Research on this gas explosion technology has been developed rapidly and several useful progresses were made in this technology using theoretical analysis, experiments, and numerical simulations in a wide range. Through investigation and analysis of existing research results, the rock breakage mechanism of carbon dioxide phase transition fracturing was elaborated. A review was also presented on the fracturing load characteristics and its testing method. The main factors influencing the fracture load and fracture result were recapitulated. This review also analyzed the harmful effects of this new technique and generalized the applications of this technology in different fields. Finally, the problems and future challenges of carbon dioxide phase transition fracturing were discussed. The review aims to provide a reference for the theoretical research, generalization, and application of carbon dioxide phase transition fracturing technology.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164