<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

催化材料服役行為的同步輻射原位X射線研究

Operando X-ray study of service behavior of catalytic materials based on synchrotron radiation

  • 摘要: 介紹了基于同步輻射的原位X射線吸收譜、原位X射線衍射譜和原位X射線光電子能譜的基本原理及功能,重點綜述了原位X射線技術在電解水催化材料服役行為動態研究中的應用進展,列舉了多種典型電解水催化劑在反應條件下結構動態變化的研究實例,為實現催化材料全生命周期動態構效關系的精準構建提供了技術基礎。最后,分析總結了原位X射線技術在面臨復雜電化學服役環境時所遇到的問題及挑戰,并提出了對先進同步輻射技術及原位X射線譜學的未來展望。

     

    Abstract: Considering the energy and environmental issues faced by human society, hydrogen has become increasingly important, and electrocatalytic water splitting is considered to be an ideal way to solve these energy issues. However, although most electrocatalysts will undergo a structural evolution when in service conditions, our understanding of the service behavior of catalysts is limited. To design highly active catalysts, operando characterization techniques must be used to study their dynamic structural evolution. Today, the development of synchrotron radiation devices has reached an important stage. Synchrotron-radiation-based X-ray characterization, which has high energy, large flux, and excellent collimation compared with the ordinary laboratory X-ray source, can capture the precise structure of catalytic materials. In this review, we present the development status of synchrotron radiation devices and the basic principles of operando X-ray absorption spectroscopy, X-ray diffraction spectroscopy, and X-ray photoelectron spectroscopy based on synchrotron radiation. In addition, we highlight studies related to the dynamic service behavior of water-splitting catalysts under real conditions and list a variety of operando studies of typical water-splitting catalysts, including NiFe hydroxide/(oxy)hydroxides, perovskite oxides, spinel oxides, and noble-metal-based catalysts. The use of operando X-ray techniques deepens our understanding of the catalyst reaction mechanism and provides a basis for identifying the dynamic structure–performance correlation of catalysts. We summarize the problems and challenges of operando X-ray-based techniques in complex electrochemical environments and propose the prospect of an advanced synchrotron radiation facility for operando X-ray characterization. With the development of the next-generation synchrotron radiation facility, adequately using this advanced X-ray light source to study the dynamic structure–activity correlation of catalytic materials throughout their life cycle to achieve the precise design and synthesis of complex pre-catalysts will advance the development of this field by enabling greater refinement and control.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164