<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

多目標粒子群優化算法研究綜述

Overview of multiobjective particle swarm optimization algorithm

  • 摘要: 針對多目標粒子群優化算法的研究進展進行綜述。首先,回顧了多目標優化和粒子群算法等基本理論;其次,分析了多目標優化所涉及的難點問題;再次,從最優粒子選擇策略,多樣性保持機制,收斂性提高手段,多樣性與收斂性平衡方法,迭代公式、參數、拓撲結構的改進方案5個方面綜述了近年來的最新成果;最后,指出多目標粒子群算法有待進一步解決的問題及未來的研究方向。

     

    Abstract: In the real world, the development model of optimization problems tends to be diversified and large scale. Therefore, optimization technologies are facing severe challenges in terms of nonlinearity, multi-dimensionality, intelligence, and dynamic programming. Multiobjective optimization problems have multiple conflicting objective functions, so the unique optimal solution is impossible to obtain when optimizing, and multiple objective values must be considered to obtain a compromise optimal solution set. When traditional optimization methods treat complex multiobjective problems, such as those with nonlinearity and high dimensionality, good optimization results are difficult to ensure or even infeasible. The evolutionary algorithm is a method that simulates the natural evolution process and is optimized via group search technology. It has the characteristics of strong robustness and high search efficiency. Inspired by the foraging behavior of bird flocks in nature, the particle swarm optimization algorithm has a simple implementation, fast convergence, and unique updating mechanism. With its outstanding performance in the single-objective optimization process, particle swarm optimization has been successfully extended to multiobjective optimization, and many breakthrough research achievements have been made in combinatorial optimization and numerical optimization. Consequently, the multiobjective particle swarm algorithm has far-reaching research value in theoretical research and engineering practice. As a meta-heuristic optimization algorithm, particle swarm optimization is widely used to solve multiobjective optimization problems. This paper summarized the advanced strategies of the multiobjective particle swarm optimization algorithm. First, the basic theories of multiobjective optimization and particle swarm optimization were reviewed. Second, the difficult problems involving multiobjective optimization were analyzed. Third, the achievements in recent years were summarized from five aspects: optimal particle selection strategies, diversity maintenance mechanisms, convergence improvement measures, coordination methods between diversity and convergence, and improvement schemes of iterative formulas, parametric and topological structure. Finally, the problems to be solved and the future research direction of the multiobjective particle swarm optimization algorithm were presented.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164