<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

銅錫合金激光選區熔化非平衡凝固組織與性能

Nonequilibrium solidification microstructures and mechanical properties of selective laser-melted Cu–Sn alloy

  • 摘要: 對具有重要工程應用價值的Cu?5%Sn合金進行激光選區熔化(SLM)成形,在激光功率160 W、掃描速度300 mm·s?1、掃描間距0.07 mm條件下,合金樣品相對密度可達99.2%,熔池層與層堆積密實,表面質量良好。研究發現所獲合金具有非平衡凝固組織特征,其中以α-Cu(Sn)固溶體相為主,且涉及具有超結構的γ相、δ相。顯微形貌主要由柱狀晶與富錫網狀組織構成,伴隨有不同尺度界面Sn元素偏析及晶界、晶內納米尺寸超結構合金相顆粒析出。所獲合金的力學性能與同成分鑄態合金或較低Sn含量SLM合金相比得到顯著強化,表面硬度可達HV 133.83,屈服強度326 MPa,抗拉強度387 MPa及斷裂總延伸率22.7%。

     

    Abstract: Cu-based alloys can be used as a selective laser melting (SLM) material for advanced engineering applications, such as aerospace, 5G mobile networks, and high-speed transportation. The mechanical properties and solidification microstructures of Cu alloys prepared using the casting technique differ from those prepared using the SLM technique, and SLM-built alloys can involve more complex microstructures and phase transformations developed in micromolten pools produced by high-power laser beams. However, nonequilibrium solidification microstructures and mechanical properties of SLM-built Cu–Sn alloys have seldom been studied in the literature. In this work, the Cu–5%Sn alloy was investigated using the SLM technique, along with cast Cu–Sn alloys for comparison. The high quality Cu-based alloy samples were fabricated using the SLM technique, with optimized processing parameters of 160 W laser power, 300 mm·s?1 scanning speed, and 0.07 mm line spacing. The samples exhibit a relative density of 99.2%, and virtually no pores and spheroidizing phenomena or warping defects were observed. The microstructural analysis of SLM-built Cu–5% Sn alloy reveals a nonequilibrium solidification feature under high cooling rates and rapid alternative thermal conditions during the SLM fabrication process, in which the α-Cu(Sn) solid solution is the major phase along with γ and δ phases. Columnar grains and reticular microstructures dominate the solidified SLM-built alloy, while segregated Sn appears in the boundaries of all levels within the alloys. The Sn-rich nanoparticles with super-lattice structures precipitates along the grain boundaries and inside the grains. With the combined effects of grain fining, super-lattice-structured nanoparticles precipitation, solid solution, and thermal residual stress, the SLM-built Cu–5%Sn alloy shows significantly enhanced mechanical properties, such as HV 133.83 Vickers hardness, 326 MPa yield strength, 387 MPa tensile strength, and 22.7% fracture extension. Such scientific information is very useful for improving the alloy composition design and optimizing the SLM processing parameters.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164