<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于梯度壓縮的YOLO v4算法車型識別

Vehicle recognition based on gradient compression and YOLO v4 algorithm

  • 摘要: 為進一步提高智能交通系統對車輛及不同車型識別的泛化性、魯棒性與實時性。根據檢測區域的特征有針對性地構建數據集,改變余弦退火衰減(CD)學習率的更新方式,提出一種基于梯度壓縮(GC)的Adam優化算法(Adam?GC)來提高YOLO v4算法的訓練速度、檢測精度以及網絡模型的泛化能力。為驗證改進后YOLO v4算法的有效性,對實際路況的車流進行采集后,利用訓練完成的網絡模型對不同密度車流進行定量的車型檢測實驗驗證。經實驗驗證,改進后方法的整體檢測結果要優于改進前,YOLO v4和YOLO v4 GC CD訓練得到的網絡模型在阻塞流樣本下檢測得到的準確率分別為94.59%和96.46%;在同步流樣本下檢測得到的準確率分別為95.34%和97.20%;在自由流樣本下檢測得到的準確率分別為95.98%和97.88%。

     

    Abstract: Intelligent transportation systems (ITS) are the development direction of future transportation systems. ITS can effectively reduce traffic load and environmental pollution and ensure traffic safety, which has been a concern in all countries. In the field of intelligent transportation, vehicle detection has always been a hot spot but a difficult matter. To further improve the generalization, robustness, and real-time performance of the intelligent transportation system for the recognition of vehicles and different vehicle types, this study proposes an improved vehicle detection algorithm and chooses a road in the city as the background of the article. According to the characteristics of the detection region, the data set is constructed pertinently and the data set size is reduced using a video frame extraction method, aiming at achieving better detection performance with less training cost. The updating method of cosine decay with warm-up (CD) learning rate is then changed. An Adam gradient compression (GC) based on GC is proposed to improve the training speed, detection accuracy, and generalization ability of the YOLO v4 algorithm. To verify the effectiveness of the proposed algorithm, the trained network model is used to verify the quantitative vehicle type detection experiment of different density traffic flows after collecting the traffic flow information under actual road conditions. Experimental results show that the overall detection of the improved method is better than that of the original method. The accuracy rates of the network models trained by YOLO v4 and YOLO v4 GC CD under the blocking flow samples, synchronous flow samples, and free flow samples are 94.59% and 96.46%, 95.34% and 97.20%, 95.98%, and 97.88%, respectively. Simultaneously, the detection effect of YOLOV4 GC CD was verified at night and on rainy days with an accuracy rate of 92.06% and 95.51%, respectively.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164