<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于微振動監測的AFT廠房結構–漿液耦合振動特性

Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring

  • 摘要: AFT氧化風機房是脫硫工藝中的一種鋼筋混凝土結構支撐鋼罐的復合結構,結構產生的明顯振動不利于正常生產運營,因此針對AFT結構進行現場監測和模擬計算。首先對AFT結構進行現場調查,基于一種AFT結構視頻監測與局部監測相結合的方法對其進行監測,隨后又提出簡化攪拌機及氧化風作用的模擬方法,通過數值模擬對AFT結構振動特性進行研究。結果表明:對AFT結構進行視頻監測可快速明確結構運動軌跡;局部監測結果表明攪拌機作用是結構振動的主要因素,氧化風的鼓入加劇了結構振動響應,因此造成了結構各柱間填充墻不同程度的損傷;將數值模擬結果與監測結果對比,驗證了簡化攪拌機及氧化風作用的計算方法,可為分析此類結構振動響應、損傷機制以及加固設計提供參考。

     

    Abstract: An AFT oxidation fan room is a kind of composite structure of reinforced concrete structure supporting the steel tank in the desulfurization process. It is a common structural form of a power plant. The obvious vibration generated by the structure is not conducive to the normal production and operation of the power plant and may even cause accidents. Therefore, on-site monitoring and a simulation calculation are carried out for the AFT structure to study the causes of vibration of the AFT structure and clarify its vibration mechanism. First, a field investigation of the AFT structure is carried out combining video monitoring and local structure vibration monitoring. Based on the simulation method of the fluid-solid interaction, a simulation method to simplify the action of the mixer and the oxidation wind in the steel tank is then proposed, and the vibration characteristics of the AFT structure are further studied through the proposed numerical simulation method. Finally, numerical simulation results are compared with the monitoring results, and causes of vibration differences in various parts of the structure are studied. Results show that video monitoring can quickly identify the structure movement track. Local monitoring results show that the mixer is the main factor of the structural vibration, and the aeration of the oxidation wind intensifies the structural vibration response, causing different degrees of damage to the infill wall between the columns of the structure. The dynamic response law of different positions of each column and the upper steel tank of the structure is found to be more different. A comparison of numerical simulation results with monitoring results verified the calculation method of simplifying the mixer and the oxidation wind effect, providing a reference for the analysis of the vibration response, damage mechanism, and reinforcement design of such structures.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164